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 Abstract – Content-based Image Retrieval (CBIR) is 
generally known as a collection of techniques for retrieving 
images on the basis of features, such as color, texture and 
shape. An efficient tool in CBIR is that of image histograms. 
In this paper a new image retrieval method is proposed with 
the use of histograms in conjunction with cellular automata 
(CAs). The main thrust of this paper is the classification of the 
images in the database by CAs and the retrieval of the desired 
images by a simple histogram extracted from the hue 
component of the HSV color space. Moreover, because of the 
CAs local rule simplicity, the VLSI implementation of the 
proposed CA algorithm is straightforward. 
 
 Index Terms – Image Retrieval, Histograms, Cellular 
Automata. 
 

I.  INTRODUCTION 

A. Image Retrieval 
 Color is one of the most important features in human 
vision. It allows the performance of complex tasks such as 
the discrimination between objects with similar shape 
characteristics but different color features, the tracking of 
moving objects, as well as the scene property analysis. In 
artificial vision the use of color information has been 
increased significantly during the past years. A very useful 
tool in color image analysis is the histogram [1]: a global 
statistical feature which describes the color distribution for 
a given image. A histogram can be created by firstly 
dividing a color space into a number of bins and then by 
counting the number of pixels of the image that belong to 
each bin. The wide use of histograms in color image 
analysis is due to their rotation and scaling invariance and 
their relatively moderate computation cost. On the other 
hand their downfall is that they are also quite unreliable as 
they are sensitive to even small changes in the scene of the 
image. In most color image processing methods, 
histograms consist of three components in respect to the 
three components of the color space used. [2] 

Among the applications of color histograms is that of 
image retrieval. Research in color imaging, from sensors to 
databases, has recently emerged to a number of different 
applications, including military, industrial and civilian 
which generate gigabytes of color images per day. Thus, 
the necessity of organizing this huge information has 
grown strong [2], which means that in order to allow 

efficient browsing, appropriate indexing should be 
available as in keyword searches of text databases. One of 
the most popular methods used for retrieval is that of 
query-by-example (QbE), which means that the user has to 
present an image to the system and the latter searches for 
others alike by extracting features from the query image 
and comparing them to the ones stored in the image 
database. The extraction of meaningful features is critical 
in Content-based Image Retrieval (CBIR) and therefore an 
open and active field of research. The features mostly used 
by researchers for indexing and retrieval are color [3, 4, 5, 
6, 7], texture [3, 4, 8], and shape [3, 4, 9]. The principal 
components of a histogram based retrieval system are: (i) 
An appropriate color space, such as HSV, L*a*b* or 
L*u*v*, (ii) a histogram representation, such as 
straightforward [1, 5, 7] or fuzzy [6] histograms and (iii) a 
similarity metric, like the Euclidean, the histogram 
intersection method [7] or the Bhattacharyya distance [10]. 
In order for the system to perform effectively, the number 
of regions that the color space is divided into is quite large 
and thus the colors represented by neighboring regions 
have relatively small differences. As a result, images which 
are similar to each other but have small differences in 
scene or contain noise will produce very dissimilar 
histograms and vice versa. In order to present a solution to 
this problem a new method for color image retrieval is 
introduced for the first time, which classifies the images 
from the database a priori using cellular automata on the a* 
and b* components of the L*a*b* color space, and then a 
single straightforward histogram extracted from the hue 
component of the HSV color space is used to produce the 
number of images requested by the user. The inherent 
parallelism of the proposed CA methodology and its easy 
VLSI implementation make it suitable for real-time 
applications in the fields of remote sensing images, 
computer vision applications, industrial engineering, 
pattern recognition, etc. 
 
B. Cellular Automata 
 CAs were first introduced by von Neumann [11] in 
1948, in an ambitious project: to show that complex 
phenomena can in principle be reduced to the dynamics of 
many identical, very simple primitives, capable of 
interacting and maintaining their identity. Following a 
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suggestion by Ulam, von Neumann adopted a fully discrete 
approach, in which space, time, and even the dynamical 
variables were defined to be discrete. CAs are models of 
physical systems, where space and time are discrete and 
interactions are local [11]. In this subsection a more formal 
definition of a CA will be presented [12]. In general, a CA 
requires: 
(i) a regular lattice of cells covering a portion of a d-

dimensional space; 
(ii) a set ( ) ( ) ( ) ( ){ trCtrCtrCtr , ..., ,,,,, m21 }rrrr

=C  of 
variables attached to each site rr  of the lattice 
giving the local state of each cell at the time t = 0, 
1, 2, … ; 

(iii) a rule R={R1, R2, …, Rm} which specifies the 
time evolution of the states ( )tr ,rC  in the 
following way: 

( ) ( ) ( ) ( ) ( )( )trtrtrtrRtrC qjj , ..., ,,,,,,1, 21 δδδ
rrrrrrrr

+++=+ CCCC (1)  

where kr δ+r designate the cells belonging to a 

given neighborhood of cell rr . In the proposed 
method the cells take the form of pixels. 

In the above definition, the rule R is identical for all 
sites, and is applied simultaneously to each of them, 
leading to synchronous dynamics. It is important to notice 
that the rule is homogeneous, i.e. it does not depend 
explicitly on the cell position rr . However, spatial (or even 
temporal) inhomogeneities can be introduced by having 
some  systematically at 1, in some given locations of 

the lattice, to mark particular cells for which a different 
rule applies. Furthermore, in the above definition, the new 
state at time t+1 is only a function of the previous state at 
time t. It is sometimes necessary to have a longer memory 
and introduce a dependence on the states at time t-1, t-2,…, 
t-k. Such a situation is already included in the definition, if 
one keeps a copy of the previous state in the current state. 

( )rC j
r

The neighborhood of cell rr  is the spatial region in which 
a cell needs to search in its vicinity. In principle, there is no 
restriction on the size of the neighborhood, except that it is 
the same for all cells. However, in practice, it is often made 
up of adjacent cells only. For two-dimensional CA, two 
neighborhoods are often considered: The von Neumann 
neighborhood, which consists of a central cell (the one 
which is to be updated) and its four geographical neighbors 
north, west, south and east. The Moore neighborhood 
contains, in addition, second nearest neighbors northeast, 
northwest, southeast and southwest, which is a total of nine 
cells. The von Neumann and Moore neighborhoods are 
shown on Figs. 1(a) and 1(b) respectively. In practice, 
when simulating a given CA rule, it is impossible to deal 
with an infinite lattice. The system must be finite and have 
boundaries. Clearly, a site belonging to the lattice boundary 
does not have the same neighborhood as other internal 
sites. In order to define the behavior of these sites, the 
neighborhood is extending for the boundary sites. 
Neighborhood extension leads to various types of boundary 

conditions such as periodic (or cyclic), fixed, adiabatic or 
reflection [12]. 

CAs have sufficient expressive dynamics to represent 
phenomena of arbitrary complexity, and at the same time 
can be simulated exactly by digital computers, because of 
their intrinsic discreteness, i.e. the topology of the 
simulated object is reproduced in the simulating device 
[13]. The CA approach is consistent with the modern 
notion of unified space-time. In computer science, space 
corresponds to memory and time to processing unit. In 
CAs, memory (CA cell state) and processing unit (CA local 
rule) are inseparably related to a CA cell. Furthermore, 
CAs are an alternative to partial differential equations [12, 
14-16], and they can easily handle complicated boundary 
and initial conditions, inhomogeneities and anisotropies. In 
addition, algorithms based on CAs run quickly on digital 
computers [17]. Models based on CAs lead to algorithms 
which are fast when implemented on serial computers, 
because they exploit the inherent parallelism of the CA 
structure [18-20]. Moreover, due to the local 
interconnections and the discreteness in space and time, 
synchronous very large scale integration (VLSI) circuits 
have been used as an implementation medium of 
algorithms based on CAs [21].  
 CAs have been extensively used as a VLSI 
architecture, since the CA architecture offers a number of 
advantages and beneficial features such as simplicity, 
regularity, and locality of interconnections. More 
specifically, there are four main factors that determine the 
cost/performance ratio of an integrated circuit; namely, 
circuit design and layout, ease of mask generation, silicon-
area utilization and maximization of achievable clock 
speed. For a given technology, the latter is inversely 
proportional to the maximum length of critical signal paths. 
In terms of these four parameters, CAs are perhaps the 
computational structures best suited for a VLSI realization. 
CAs as a VLSI architecture have been applied, among 
others, to image processing [22-24], byte error correcting 
codes [25], classification [26] and as pseudorandom 
number generators [27]. Special computing machines have 
also been developed based on the CA architecture [18-19] 
and, furthermore, special Cellular Automata algorithms 
have been implemented on massively parallel computers, 
such as the Cellular Automaton Machine (CAM) [18-19, 
28]. 
 

 
(a)                                   (b) 

Fig. 1 The von Neumann (a) and Moore (b) neighborhoods used in CAs. 



II.  THE CELLULAR-BASED COLOR IMAGE RETRIEVAL 
SYSTEM 

The use of global histograms for image retrieval has 
proven to be an efficient and robust retrieval method [5, 6, 
7], as it describes the overall statistics of the color in the 
images and is insensitive to rotation and scaling of the 
images themselves. However, such techniques lack in cases 
where the images have similar colors, but are spatially 
distributed differently. This problem can be overleaped 
with the use of local histograms (Splitting each image into 
smaller  regions) [5]. These on the other hand suffer a 
severe lack of speed due to the rapid increase in 
computational burden which results from the repetitiveness 
needed to produce local histograms. This leads to the need 
of adoption of global histograms with embedded local 
characteristics, such as the CA histogram. In a CA the 
future value of the central pixel always depends on the 
current values of the surrounding pixels in its immediate 
(von Neumann) or second (Moore) neighborhood. The 
proposed histogram creation method has a straightforward 
algorithm in which the a* and b* components, from the 
L*a*b* color space, and hue, from the HSV color space, 
are used. One of the reasons why the L*a*b* color space 
was selected is that it is a perceptually uniform color space 
which approximates the way that humans perceive color. 
However, the main reason is that L*a*b* was found to 
perform better than other color spaces in various retrieval 
tests performed in the laboratory for this exact purpose [5]. 
In L*a*b*, L* stands for Luminance and has a range of 
[0,100], a* represents relative greenness-redness and b* 
represents relative blueness-yellowness; both having a 
range of [-128, 127]. All colors and grey levels can be 
expressed throughout a combination of the three 
components. On the other hand, the HSV color space was 
selected as it also reflects human vision quite accurately. 
Nevertheless, the major reason for its selection is because it 
mainly uses only one of its components (hue) to describe 
color in an image. The other two components, i.e. 
saturation and value are significant mostly when describing 
black, white, gray and various shades of colors. The HSV 
color space can be represented as a round cone in which 
Hue is the angle, ranging from [0o, 360o], where 0o and 
360o degrees feature the color red. 

In the first step of the proposed method, a Moore type 
CA is applied to each of the a* and b* color space 
components of all the images in the database. The pixels 
from the second (Moore) neighborhood are all added to the 
occasional central pixel for five epochs or until all the 
pixels in the image assume either of the two absolute 
highest values of the a*b* components (|-128| and |127|). 
The number of five epochs was selected through several, 
accuracy versus time, tests, after which the value above 
was found to be the optimal one to ensure great accuracy 
but also great speed. At the end of each of these epochs, 
every pixel’s new value is compared to its old one in order 
to count the number of pixels whose value is still changing. 
This number is stored in a vector whose final size depends 
on the number of epochs ran for the CA to come to a stop 

and is considered to be the CA histogram featuring the 
number of shifting pixels during each epoch; ergo, each bin 
of the histogram contains the number of changing pixels 
for each epoch. If the number of pixels changing is large 
this means that most neighborhoods of pixels in the 
occasional image have small values. 

The final stage of the system is that of the actual 
retrieval of the images. Following the CA histogram 
extraction of all the images in the database, each of these 
double histograms, since two color space component are 
considered, are compared to the ones extracted from the 
query image itself with the use of the Bhattacharyya [10] 
distance and only the first 100 most similar images are 
taken into account. Thus it is fair to say that the method 
described above acts as a pre-classifier for the final part to 
follow. Hence, from each of these indexed images, another 
histogram of 32 bins, is extracted, using the hue (H) 
component of the HSV color space which is compared to 
the respective one extracted from the query image again 
with Bhattacharyya distance through which the most 
similar images (the number is selected by the user) are 
presented. The Bhattacharyya distance which was selected 
subsequent to extensive tests and simulations, measures the 
statistical separability of spectral classes; giving an 
estimate of the probability of an accurate classification: 

∑ ×−=
i

CQCQ iHiHHHB )()(ln),(                             (2)  

where HQ and HC are the histograms of the sought image 
and the query image, respectively. 

The Bhattacharyya distance does not take into account 
zero histogram entries. For highly structured histograms 
(i.e. those, that are not uniformly populated), this can lead 
to the selection of matches in which there is a strong 
congruence between the structure of query and data–base 
histogram.  

III.  EXPERIMENTAL RESULTS 

The performance of the proposed method was tested 
through the retrieval of various images sets from a 
collection of 1040 images (Image sets 1 and 5 in Figs. 2 
and 3 respectively are representative of the database), some 
selected from different sites on the internet, others scanned 
from personal photographs and a large amount of images 
taken with several different digital cameras. The images are 
online, available at the following URL: 
http://utopia.duth.gr/~konkonst. The images in the 
collection are representative for the general requirements 
of an image retrieval system. The range of topics presented 
is quite wide and varies from natural scenes, such as 
landscapes, sport events, concerts, etc; to artificial 
computer graphics, that tend to confuse image retrieval 
systems. The experiments were all ran on Mathworks’ 
Matlab R14 on a Pentium 4 processor with 1 GB of RAM. 
All the images were scaled to a 50x50 pixel size using the 
nearest-neighbor method in order to make the algorithm 
faster and to avoid later normalization of the histograms 
resulting in loss of color quantity information. 

http://utopia.duth.gr/%7Ekonkonst


The retrieval outcome is presented through a query 
session which produces 20 images (the figures of the image 
sets 1 and 5 are shown below in Figs. 2 and 3) ranked in 
similarity according to the value produced by the metric. 
The smaller the number that the metric produces, the 
higher the similarity of that specific image is. Based on the 
diversity which exists in the image database the ranking of 
the Bhattacharyya distance value can be considered as 
quite an objective criterion to compare the query image to a 
random image in the database. In the first image set (Fig. 2) 
the general concentration of red is very high; nonetheless 
the system does not confuse the images due to the 
difference in the spatial concentration distribution of the 
particular color as well as the variations of the rest of the 
colors in the two images thus proving its robustness. 

In addition to the system described above, another 
system was implemented for means of comparison. 
Straightforward histograms of 32 bins resulting from the 
hue component of the HSV color space were created for 
each image in the database and the Bhattacharyya distance 
was used in order to compare  them to the one extracted 
from the query image.  

The measurement used in order to present the 
performance of the method is the retrieval performance 
percentage, which is the percentage of actual similar 
images produced in the 20 first most similar images 
retrieved by the system. The numerical comparison of six 
image sets retrieved by the proposed method and the 
simple hue histogram system is presented through the 
retrieval precision on Table 1. The proposed method 
accuracy spans from a low precision percentage of 80 
percent to the highest 100 percent stating the clear 
improvement in precision of the proposed method over the 
simple hue one which ranges from 60 to 85 percent as 
shown in Table 1. In addition to the precision perspective, 
another aspect of retrieval performance is presented by the 
graph in Fig. 4: precision versus recall [29].  

Precision is the proportion of relevant images retrieved 
R (similar to the query image) in respect to the total 
retrieved A, whereas recall is the proportion of similar 
images retrieved in respect to the similar images that exist. 
Precision=Similar Retrieved/Total Retrieved= ARA∩  

Recall = Similar Retrieved / Similar Exist = RRA∩  

Generally, precision and recall are used together in 
order to point out the change of the precision in respect to 
recall. In most typical systems the precision drops as recall 
increases, hence, in order for an image retrieval system to 
be considered effective the precision values must be higher 
than the same recall ones, which is the case in the proposed 
method. For example, when retrieving the second image set 
the system failed only after having produced 12 correct 
images and still managed to produce similar images from 
that particular fail point to the end.  

In order to further test the robustness of the compared 
systems four more tasks were executed. For the first task 
salt and pepper noise of density 0.15 was inserted to the 
query images, then the lightness of the images was initially 

increased and then decreased, moreover the images were 
blurred by a filter which approximates the linear motion of 
a camera by len (31) pixels, with an angle of theta (11o) 
degrees in a counter clockwise direction, and last the 
images were rotated by 45o clockwise. The outcome of the 
tests proved that although the query images were severely 
altered, the precision percentages of the proposed method 
were not decreased at the slightest and the images were 
retrieved successfully; thus demonstrating that the 
algorithm presented is robust even to extreme changes in 
the images in contradiction to the simple HSV histogram 
whose results of retrieval percentage were decreased even 
more. 

TABLE I 
FILTERING PERFORMANCE (PRECISION) WITH TIME 

Image Sets 1 2 3 4 5 6 Time (seconds)

Proposed Method 
Performance (%) 100 95 95 80 100 95 256 

Simple Hue Histogram 
Performance (%) 85 75 80 60 85 80 65 

 

 

 

 

 
Fig. 2 The 20 retrieved images from data set 1. All the images are 

rightfully retrieved. The first image is also the query image; the images are 
presented in descending score from left to right and from top to bottom.  

 

 

 

 

 
Fig. 3 The 20 retrieved images from data set 5. All the images are 

rightfully retrieved. The first image is also the query image; the images are 
presented in descending score from left to right and from top to bottom.  



 
Fig. 4 Comparison of the 6 image sets. Precision against Recall 

IV.  CONCLUSIONS 

A new color histogram creation method was proposed 
for the first time. This method produces histograms whose 
class contains information, not only on the global color 
distribution over the image, but on its local concentration 
as well. The histograms are created based on the a* and b* 
components of the L*a*b* color space and are acquired 
through CAs. The resultant CA histograms are suitable for 
content based image retrieval utilizing color characteristics. 
A CBIR system employing the proposed histograms was 
implemented and assessed. The system in hand was 
compared to a simple HSV histogram-based image 
retrieval system proving to be much more accurate and 
robust through several image retrieval tests. Target 
applications of the proposed system include internet 
queries, retrieval of remote sensing images and relative 
computer vision applications. Finally, on account of the 
assumed CA’s local rule simplicity, its VLSI 
implementation is straightforward. This VLSI 
implementation lead to dedicated CA processors that 
execute the CA algorithms, and can be designed using 
commercially available VLSI CAD tool systems. 
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