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Abstract - This paper proposes a spatially adaptive statistical 
model for wavelet image coefficients in order to perform 
image de-noising. The wavelet coefficients are modelled as 
zero-mean Gaussian random variables with high local 
correlation. This model is developed in a Bayesian framework, 
where a Maximum Likelihood (ML) estimator evaluates the 
variance of the blocks to which the wavelet subbands have 
been segmented. Then, applying the Minimum Mean Squared 
Error (MMSE) estimation procedure, the original or de-
noised wavelet image coefficients are estimated. The reliable 
estimation of local variance is performed by making the 
assumption that variance is locally smooth. The validity of 
this assumption is boosted by segmenting the wavelet 
subbands into blocks of variable size with two methods. The 
first method employs image quad-tree decomposition and 
transfers linearly the resulted tree on the wavelet subbands. 
This decomposition identifies object boundaries and defines 
more accurately the regions of smooth variance instead of 
dividing them in to blocks of fixed size. The second method 
performs quad-tree decomposition of every subband with a 
variance splitting criterion. The subbands are segmented into 
blocks of nearly constant variance, so that the transform 
coefficients to be approximated as i.i.d random variables. The 
extensive experimental evaluation shows that the proposed 
scheme demonstrates very good performance as far as PSNR 
measures and visual quality are concerned with respect to 
others state of the art de-noising schemes. 

 
Index terms - wavelets, de-noising, quad-tree decomposition. 

 
I. INTRODUCTION 

 
An image is often corrupted by noise during its 

acquisition or transmission. Image de-noising is used to 
remove the additive noise while retaining as much as 
possible the important image features. In the recent years 
there has been a fair amount of research on filtering and 
wavelet coefficients thresholding, because wavelets 
provide an appropriate basis for separating noisy signal 
from the image signal. These wavelet-based methods 
mainly rely on thresholding the Discrete Wavelet 
Transform (DWT) coefficients, which have been affected 
by Additive White Gaussian Noise (AWGN).  

Since the work of Donoho and Johnstone [1]-[4], there 
has been a lot of research on the way of defining the 
threshold levels and their type (i.e. hard or soft threshold). 
These algorithms usually perform global thresholding of 

wavelet coefficients by retaining only large coefficients 
and setting the rest to zero. Thus, they do not present 
spatial adaptivity and their performance in real life images 
is not sufficiently effective. 

A wide class of image processing algorithms is based 
on the DWT. The transform coefficients within the 
subbands can be locally modelled as independent 
identically distributed (i.i.d) random variables with 
Generalized Gaussian Distribution (GGD) [5]. In that 
sense, the de-noised coefficients may be evaluated by an 
MMSE (Minimum Mean Square Error) estimator, in terms 
of the noised coefficients and the variances of signal and 
noise. The signal variance is locally estimated by an ML 
(Maximum Likelihood) estimator, whereas noise variance 
is estimated from the first level diagonal details. Therefore, 
the de-noised coefficients are statistically estimated in 
small regions for every subband instead of applying a 
global threshold [6]. These methods present efficient 
results but their spatial adaptivity is not well suited near 
object edges where the variance field is not smoothly 
varied. In [7] a similar spatially adaptive model for wavelet 
image coefficients was used to perform image de-noising 
via wavelet thresholding. 

The present work employs the spatially adaptive model 
as in [6] and performs MMSE coefficient estimation, rather 
than coefficient thresholding as in [7]. However, it differs 
from [6] in the way that the underlying variance field is 
estimated. In our work, this estimation is performed in a 
variable block size framework in contradiction to [6] where 
a fixed block size framework is used.  The subbands 
segmentation into blocks of variable size is performed with 
two methods. The first method decomposes the noisy 
image by employing quad-tree analysis and transfers 
linearly the resulted tree on the wavelet subbands. This 
approximation is rational if the spatial dependency among 
the image and the wavelet subbands is considered. This 
decomposition identifies object boundaries and defines 
more accurately the regions of smooth variance instead of 
dividing them in to blocks of standard size. In addition, the 
algorithm becomes faster as fewer blocks are created. The 
second method decomposes every subband employing 
quad-tree analysis with a variance splitting criterion. The 
subbands are segmented into blocks of nearly constant 
variance, so that the transform coefficients to be 
approximated as i.i.d random variables. 
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This paper is organized as follows. Section 2 describes 
the proposed de-noising algorithm. The experimental 
results are presented in Section 3 and the conclusions are 
summarized in Section 4. 

^

^

^

 
II. THE PROPOSED DE-NOISING ALGORITHM 

 
A. The statistical model 
 

The statistical model of the proposed de-noising 
algorithm is illustrated in Fig. 1. A noise contaminated 
image may be formulated as in the block-diagram. A 
“clean” image, x, is decomposed by DWT providing the 
wavelet coefficients X(k). These coefficients, which may 
be locally considered as i.i.d GGD random variables with 
variance , are corrupted by additive i.i.d Gaussian 
noise samples, n(k), to produce the observed wavelet 
coefficients of the noisy image, Y(k). 
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Let W and W-1 denote the two dimensional DWT and 

its inverse respectively. The relationship between image 
and transform coefficients is: 

                                  (1) XWxandWxX 1−==

The “clean” coefficients, X, may be estimated from the 
observed coefficients, Y, if noise variance, and image 

variance,  are known. Here, a robust median 
estimator of the highest subband diagonal coefficients (i.e. 
HH
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1) estimates the noise variance [2]. Also, an ML 
estimation of image variance is performed for every 
transform coefficient, using the observed noisy data in its 
local neighborhood. In this work, the local neighborhood is 
defined by segmenting the image or every subband by 
quad-tree decomposition. Finally, an MMSE estimator 

provides an estimate of the “clean” coefficients, . The 
reconstructed de-noised image is given by: 
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B. The mathematical estimation 
 

It is known that the best estimate of a random variable 
x given by an MMSE estimator is: 

                                                           (3) 

Also, under the assumptions of independence and Gaussian 
distribution of the random variables, it is known that [8]: 
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The last equation describes the conditional distribution of 
the observed values when the “clean” values are known. 
The Bayesian estimation of the “clean” values given the 
observed values is: 
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If the Gaussian distributions are replaced by their explicit 
forms, equation (5) results in: 
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The estimated “clean” wavelet coefficients result by 
considering equations (3) and (6): 
 

Fig. 1 Block-diagram of the proposed de-noising algorithm. The statistical model is based on an ML estimator for an 
estimate of the underlying variance and an MMSE estimator for the evaluation of the “clean” wavelet 

coefficients. 
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But in fact  is not known, so we employ an ML 

estimator in order to have an estimate, , for a local 
neighborhood, where variance is assumed to be constant. 
The ML estimate is defined as: 

2
Xσ

σ
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In our case, this takes the following form: 

                                (9) 

where N  is the local neighborhood. The maximum of the 
above equation is found to be for: 
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where M represents the number of wavelet coefficients 
residing in the local neighborhood N. 
Therefore, the estimate of the “clean” coefficients variance 
is: 
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Finally, the “clean” coefficients are estimated combining 
(7) and (11): 
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where the noise variance is estimated, as it was stated in the 
previous subsection, by: 
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where Y(k) represent the coefficients of HH1 subband. 
 
C. The proposed methods of de-noising 
 

Applying the aforementioned analysis, the noise 
contaminated image is subjected to DWT and the “clean” 
coefficients are estimated by equations (11), (12) and (13). 
Then, the “clean” image is attained by reconstruction 
employing the inverse DWT. However, the above 
mentioned equations are valid assuming that the underlying 
variance field in the subbands is varying smoothly in a 
local neighbourhood. The local neighbourhood may be 
defined by segmenting the subbands into blocks of fixed 
size [6] or into blocks of variable size as it is proposed in 
this work. 

The first method of segmentation is based on quad-tree 
decomposition (QTD) of the noisy image applying an 
intensity difference splitting criterion. According to this 
criterion, a parent block splits into four children blocks if 
the intensity gradient within block is greater than a 
predefined threshold. Fig. 2 illustrates the segmentation of 
“Lena” image and its associated horizontal subband with 
QTD.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 2 QTD segmentation into blocks of variable size. (a) Noisy image; (b) Horizontal subband (HL1) after DWT. 

 
 

 



The image is transformed by DWT and the segmentation 
tree is linearly transferred in every subband because there 
is a spatial dependency among the subbands and the image. 
This decomposition identifies object boundaries and 
defines more accurately the regions of smooth variance 
instead of dividing them in to blocks of fixed size. Also, 
the computational complexity is lowered because the 
execution of the algorithm is performed in fewer blocks. 

The second method transforms the image by DWT and 
segments each subband by QTD employing a variance 
splitting criterion, Fig. 3. According to this criterion, a 
parent block splits into four children blocks if its variance 
is greater than a predefined threshold. The threshold is set 
to a low value so that the resulting blocks to present 
uniform variance. In this work, the variance threshold is set 
to 10% of the subband’s variance. 
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III. EXPERIMENTAL RESULTS 
 

The experimental evaluation is performed on three 
gray scale images like “Lena”, “Barbara” and “Boat” of 
size 512×512 pixels at different noise levels. The wavelet 
transform employs Daubechies’s least asymmetric 
compactly supported wavelet with eight vanishing 
moments [9] at four levels of decomposition. The objective 
quality of the reconstructed image is measured by: 
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where mse is the mean square error between the original 
(i.e. x) and the de-noised image (i.e. ) with size IxJ: x̂
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Fig. 3 Subbands QTD segmentation into blocks of 

variable size.  

 
To assess the performance of our first proposed method, it 
is compared with SureShrink [3], BayesShrink [7], 
NormalShrink [10], Wiener [11] and LAWML [6]. The first 
of the above mentioned methods is the hard-thresholding of 
wavelet coefficients using a constant threshold for all 
subbands that is estimated by a robust estimator from HH1 
subband. The second method uses spatially adaptive 
wavelet thresholding. The third method employs the same 
principle as the previous one in order to estimate subband 
dependent threshold. The fourth method is based on the 
Wiener filter de-noising algorithm and the last one employs 
the statistical modelling of wavelet coefficients in order to 
estimate the “clean” coefficients using the observed ones 
and estimating the underlying variance field in a local 
neighbourhood. The PSNR of the various methods are 
compared in Table I and the best ones are highlighted in 
bold fonts. 
 
 
 
 
 

 
 
 
 
 
 

TABLE I 
 PSNR comparative results for “Lena” and various values of noise standard deviation. 

 

 SureShrink BayesShrink NormalShrink Wiener LAWML QTD 

Lena 

33.87 33.60 σn=10 33.34 33.16 32.80 33.59 

σn=15 31.22 31.18 30.89 31.12 31.58 31.52 

σn=20 29.80 29.82 29.60 28.99 29.91 30.17 

σn=25 28.67 28.87 28.54 27.19 28.56 29.11 

σn=30 28.07 28.12 27.72 25.67 27.62 28.07 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is apparent that our first proposed method, called QTD, 
performs at least equally well to all other methods in 
almost the whole examining range. Fig. 4 demonstrates the 
subjective quality performance among the three methods 
that present the best PSNR results from Table I. In this 
figure, “Lena” is contaminated with noise of standard 
deviation equal to 30. It may be observed that the quality of 
the de-noised image of our proposed method is quite fair 
compared to SureShrink and BayesShrink, both in low and 
high textured areas. 

The performance of our second proposed method, called 
QTDvar, is compared with the previous QTD method, 
LAWML and BayesShrink. Tables II, III and IV provide the 
comparative results of these methods for the three tested 
images. Our method provides considerable PSNR margins 
over the other algorithms. For example, in “Lena” QTDvar 
outperforms LAWML by 1.5 dB and BayesShrink by 1 dB 
for σn=30, that is, in a heavily noise contaminated image. 
Similarly, in “Barbara” QTDvar outperforms LAWML by 
0.18 dB and BayesShrink by 1 dB for σn=30. In “Boat”, 
there is a better objective quality by 0.7 dB for σn=30.  

Fig. 5 illustrates the quality performance of the above 
methods for “Boat” image, which is affected with noise of  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                         (a)                                                                        (b) 

Fig. 4 Subjective quality performance comparison for noise standard deviation σn=30.   
(a) Noisy image; (b) SureShrink; (c) BayesShrink; (d) QTD. 

                        (c)                                                                        (d) 

σn=30. It is obvious that QTDvar method performs better 
de-noising than the other methods and provides a more 
pleasant image quality, in a strong additive noise 
environment. 

 
 

TABLE II 
PSNR comparative results for “Lena” image and various values of noise 

standard deviation. 
 

 BayesShrink LAWML QTD QTDvar 

Lena 

σn=10 33.16 33.87 33.60 34.03 

σn=15 31.18 31.58 31.52 32.22 

σn=20 29.82 29.91 30.17 30.92 

σn=25 28.87 28.56 29.11 29.91 

σn=30 28.12 27.62 28.07 29.11 

 

 



TABLE III 
PSNR comparative results for “Barbara” image and various values of 

noise standard deviation. 
 

 BayesShrink LAWML QTD QTDvar 

Barbara 

σn=10 31.21 32.47 31.18 31.77 

σn=15 28.72   30.08 29.36 29.58 

σn=20 27.18 28.35 27.96 28.11 

σn=25 26.08 27.07 26.93 27.08 

σn=30 25.20 26.00 26.01 26.18 

 
Fig. 6 shows the subjective quality of the two best 

methods, which are our proposed method QTDvar and 
LAWML, for “Barbara”. The noise standard deviation is set 
again to σn=30. The reconstructed images have been 
magnified in order to observe differences around a region 
that contains low and high texture areas.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE IV 
PSNR comparative results for “Boat” image and various values of noise 

standard deviation. 
 

 BayesShrink LAWML QTD QTDvar 

Boat 

σn=10 31.82 32.39 31.67 32.06 

σn=15 29.65 30.15 29.83 30.12 

σn=20 28.20 28.56 28.48 28.77 

σn=25 27.19 27.34 27.46 27.80 

σn=30 26.37 26.31 26.59 27.05 

 
It may be observed that our proposed algorithm QTDvar 
performs equally well to LAWML around the kerchief 
stripes of “Barbara” and outperforms LAWML around her 
face, where the reconstructed image has smoother texture. 
Thus, our algorithms perform very efficiently in both low 
and high textured areas in a high interfering environment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                       (a)                                                                       (b) 

                       (c)                                                                      (d)

Fig.  5 Subjective quality performance comparison for noise standard deviation σn=30.  
(a) BayesShrink; (b) LAWML; (c) QTD; (d) QTDvar.  

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. CONCLUSIONS 
 

In this paper, two methods are proposed for recovering 
an image from noise contamination effectively. They are 
based on the discrete wavelet decomposition of the image 
and the Generalized Gaussian Distribution modelling of the 
subband coefficients. Both methods employ a spatially 
adaptive model and perform MMSE coefficient estimation 
instead of the classical threshold estimation. The proposed 
algorithm segments the subbands into blocks of variable 
size and estimates the variance in each block assuming that 
it is smoothly varying in a local neighbourhood. The 
novelty of the proposed methods is that the local 
neighbourhood in the subbands are blocks of variable size. 
This ensures that the underlying variance field is more 
uniform and its estimation is more accurate. Moreover, 
there is an inherent edge preserving mechanism from over 
smoothing, as the object edges are confined in blocks of 
small size. The segmentation is performed by quad-tree 
decomposition employing an intensity or variance splitting 
criterion. The noise variance is estimated by the robust 
estimator used by SureShrink method. Finally, the “clean” 
coefficients are estimated by an MMSE estimator and the 
“clean” image is recovered by an inverse transform.  

The first proposed method decomposes the noisy image 
employing quad-tree analysis and transfers linearly the 
resulted tree on the wavelet subbands. This decomposition 
identifies object boundaries and defines more accurately 
the regions of smooth variance instead of dividing them in 
to blocks of standard size. The second method decomposes 
every subband employing quad-tree analysis with a 
variance splitting criterion. The subbands are segmented 
into blocks of nearly constant variance and the transform 
coefficients can be approximated as i.i.d random variables. 
The two proposed algorithms are tested with three grey 
scale images for various values of noise standard deviation  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                      (a)                            (b) 
 

Fig. 6 Subjective quality performance comparison for noise standard deviation σn=30. 
 (a) LAWML; (b) QTDvar. 

 
 
 
 

and their performance is compared with other de-noising 
algorithms. The experimental evaluation showed that the 
proposed methods have a very good performance, 
providing reconstructed images with fairly good quality.  
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