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 Abstract - The paper provides general insight into the 
analog systems diagnostics architecture. Automation of the 
wavelet transform de-noising procedure is presented. 
Decision trees based fuzzy logic decision making module for 
single and multiple fault detection of the 4th order 
servomechanism is described. The factor for assessment of 
the diagnostic quality considering limited size of the 
learning data structure is proposed. 
 
 Index Terms – fault detection, analog systems, diagnostics, 
machine learning, artificial intelligence. 
 

I.  INTRODUCTION 

 Modern Fault Detection and Isolation (FDI) techniques 
focus on the artificial intelligence methods. Neural 
networks or genetic algorithms [1] are successfully used to 
diagnose faults in various technical domains. Automation 
and versatility of the methods is strongly preferred. In [2] 
the architecture addressing these issues was proposed. 
Working in noisy conditions, automatic fault detection and 
self-design of the diagnostic module are advantages of the 
architecture (Fig. 1). It divides the diagnostic operation 
into smaller, basic stages (labelled by letters A-E). 
Therefore it can be used for variety of objects, requiring 
only learning data from simulation of their models. Using 
the latter is popular and efficient method of systems’ 
analysis [3]. The architecture minimizes required 
knowledge about the objects’ work regime. Novelty of the 
approach is the ability to treat different analyzed objects in 
the same way, opposed to the traditional methods with 
limited applications. In our technique SUTs are processed 
in the form of the set of the numbers – measurement 
information. Decision making module works on the data 
extracted from system under test (SUT) responses, i.e. 
coordinates of certain response points (called stamps), 
determining SUT element values change. Method’s 
usefulness was confirmed on SUTs from electronic and 
mechatronic domains [2]. Aiming at the increase of the 
architecture quality requires insight into particular stages. 
The most important are de-noising (B) and decision 
making (D), having the greatest influence on the 
diagnostics quality. Wavelet transform was used to clear 
the noisy signal, while fuzzy logic has been utilized to 
provide decision module [2]. Both methods can be 
parameterized and automated. Fuzzy logic proved its 
usefulness in uncertainty conditions, when multiple faults 
occur, but is not self-designable. Versatile architecture 

requires incorporating existing and new concepts into a 
generic scheme. It enables the designer to choose particular 
algorithms and deploy them freely. Architecture flexibility 
allows for different methods application, but requires 
efficient assessment methods for them. The approach goes 
beyond the traditional understanding of the diagnostics and 
significant increase of possible applications is expected. 
 

 
Fig. 1. Generic diagnostic architecture 

 
Possible applications of the architecture require 

detailed examination of its stages and comparing various 
diagnostic methods. The most important stages (B,D) are 
considered in the paper. It has three goals. Firstly, the 
architecture versatility is confirmed by fault analysis of 
the not tested yet 4th order servomechanism. Secondly, 
automated de-noising and multiple fault detection of the 
SUT are considered. Finally, a method for the diagnostics 
quality assessment is introduced. It helps to design 
optimal learning data set. In section II, the testing 
example – 4th order servomechanism is presented. 
Section III covers the issue of de-noising operation 
automation. Section IV focuses on the diagnostic method 
versatility, while section V addresses the diagnostic 
quality assessment. All presented algorithms were 
implemented in Matlab 6.1 environment. 

 
II. SYSTEM UNDER TEST 

The generic architecture has been so far tested on 
SUTs, belonging to different technical domains [2,4], e.g. 
electrical machine or electronic circuit. Another popular 
field of diagnostic usage is control domain. Practical 
applications reveal problems of systems with moving 
parts (friction) [3] or robotic components [5]. They must 
be analyzed to detect and predict [3] faults. Versatility of 
the proposed architecture will be confirmed by additional 
tests on the 4th order servomechanism [6]. It was 
examined before, using sensitivity analysis [7], therefore 
comparison between this method and our approach can be 
performed. It will be also used to illustrate concepts 
presented in the paper. 
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Fig. 2. General layout (a) and mechanical part (b) of the servomechanism 

 
The control system (Fig. 2) contains feedback loop, 

repeating the output signal on the input. Compensation of 
elements’ changes is in this way assured, making 
diagnostics difficult.  

The SUT controls move of the load. Rotational 
movement of the motor is translated into the translational 
movement of the load. The feedback loop ensures keeping 
the position, velocity and acceleration of motor and load 
within desired margins. Processed loop data is returned to 
the controller through the encoder. 

The state space equations explaining work regime of 
the mechanical part (Fig. 2b) are as follows (measured 
responses are ϕ1, ϕ’1, ϕ2, ϕ’2): 
 

 
 
           (1) 

 
 

where d12, d10, d20 are dampings in mechanical part, ϕ1, ϕ’1, 

ϕ’’1 are position [rad], velocity [rad/s] and acceleration 
[rad/s2] of rotor motor, ϕ2, ϕ’2, ϕ’’2 are position, velocity 
and acceleration of the load, Cs is servo stiffness, k is 
transmission stiffness, Ds is servo damping, J1, J2 are 
inertia and rotor loads, Tm is motor torque and r(t) is the 
input signal. Nominal values of diagnosed parameters are 
Cs = 3,432 Nm/rad, Ds = 4.695e-2 Nms/rad, d12 = 4,943e-5 
Nms/rad, k = 6 Nm/rad, J1 = 4,489e-4 kgm2, d10 = 5,5e-4 
Nms/rad. Other parameters are kept at their nominal 
values: d20 = 2e-3 Nms/rad, J2 = 5e-4 kgm2. Example of the 
SUT response is in Fig. 3. Stamps are indicated by the 
crosses on the response pattern. Large number of stamps is 
recorded for all the responses to deliver data for design of 
the decision making module. 
 

 
Fig. 3. Response of the servomechanism for the Sa(αt) excitation. 

 
III. AUTOMATION OF THE DE-NOISING 

PROCEDURE 

This section discusses automation of the denoising 
module. Wavelet transform (WT) was successfully used to 
clear noisy signals in tested SUTs [2]. It represents signal’s 
characteristics at multiple frequencies (time-scale domain) 
with high accuracy. The WT de-noising (used for clearing 
both one [8] and two dimensional [8,9] data arrays ) is an 
iterative process based on the interaction between the 
signal and two functions: wavelet and scaling (high- and 
lowpass filters respectively). This rules out wavelets 
lacking the latter (e.g. Mexican Hat). De-noising separates 
low and high frequency signal components (called 
approximations A(t) and details D(t), respectively). WT 
analyses low and high frequency signals [10]: 
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where φ is a wavelet function, ψ is a scaling function. The 
original signal f(t) is reconstructed from (2): 
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  We use (2) and (3) to decompose original, noisy signal 
into not important details and approximation, bearing 
crucial information about the servomechanism’s state. The 
main automation issue is the wavelet type selection for 
noise filtering and setting number of iterations for the 



operation. The former is obtained using similarity between 
the reference and de-noised signals. For every wavelet 
candidate denoising operation on the signal is performed. 
Then, the measure of the resemblance, based on the 
correlation between the reference and de-noised signal is 
determined. Firstly, for the reference signal (obtained from 
the nominal model) autocorrelation function is calculated. 
Then, for the de-noised signal, crosscorrelation with the 
reference signal is determined. The minimum absolute 
value of the difference between summed samples of auto- 
and crosscorrelation functions is the wavelet selecting 
criterion.  

The number of de-noising iterations is set by using 
the entropy criterion to decide when the signal contains 
no more relevant noisy coefficients. In every iteration the 
threshold entropy (with the threshold ε) for details is 
calculated: 
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where si is a sample of Dk. Searching for the threshold to 
determine proper decomposition level usually is based on 
the power of the noise analysis [8, 11]. In our approach the 
threshold ε is also determined using the noise power 
estimation. We use signal-to-noise ratio (SNR) to find how 
much signal is affected by the noise. Firstly, dynamic range 
of the analyzed response is calculated. It is used to 
determine parts of the signal the most vulnerable to the 
noise. They are signal samples differing no more than five 
percent from the minimum signal value. For them, average 
SNR is calculated to find the threshold: 
 

)20/(

135.0 SNRe
⋅=ε      (5) 

 
Example 
Application of the formula (5) to the vulnerable parts of the 
noisy response of the servomechanism (similar to Fig. 3) 
resulted in average SNR=11,41dB. Then, threshold ε = 
0,6431 rad. Using this, the de-noising procedure stopped at 
the fourth iteration. When ε was too large, for example 2 
rad, algorithm stopped after two iterations, leaving too 
many noisy coefficients. For all the experiments 
conducted, the number of iterations was never greater than 
5 (depending on the noise level). 
 

Proper selection of ε makes possible accurate 
extraction of stamps. Too small value of ε results in too 
many iterations misshaping the signal, which leads to 
erroneous diagnosis. Too large threshold value leaves 
multiple noisy coefficients intact, making stamps extraction 
difficult.  

 
IV. FAULT DETECTION AND LOCATION 

Decision module is designed to work autonomously. 
The automation refers not only to the fault detection and 

location, but also to self-adjustment, based on the set of 
learning examples (acquired from tested SUT model). 
Examples provide signal responses, from which stamps 
are extracted. Matrix A containing experiments’ 
responses is created, with stamps from single experiment 
in every row. Every column contains particular stamp’s 
values for different experiments. Information about the 
fault source in the experiment is stored in the last column 
of A. It is a code of two digits and a sign, informing 
about the fault source (number of the faulty element) and 
measure of its deviation from nominal value. The latter 
discretizes continuous space of the elements’ values. It is 
represented by the number from the set {-2, -1, 0, 1, 2}. 
In the simplest form of the decision making procedure 
only three elements, i.e.   {-1, 0, 1}, suffice. However, 
additional states (referring to larger deviations) often 
increase diagnostic efficiency, as in this case. For 
example, code “-21” states that “element number 2 has 
too small value”, while “11” means that “element 1 has 
too large value”. Code “0” is for fault-free state. 
Although data in A contain only experiments for single 
faults, the architecture is expected to detect multiple 
faults also. Two simultaneous codes would be then 
indicated. Expert’s knowledge required for the fuzzy 
logic design is obtained from A using decision trees 
(similarly to [12] Recursive algorithm [2] of the tree 
generation extracts the important data from the matrix A. 
The tree structure contains two kinds of the vertices. The 
former are the nodes holding the tests (the threshold 
value compared to the value of one of the example’s 
stamps). The latter are the leaves (terminal nodes), 
storing the fault code. Based on that data and decision 
tree structure, components of the fuzzy logic are created: 
input and output membership functions (MFs) and rules. 
The input MF sets are created based on the tree nodes. 
The tests considering the same stamp are extracted to 
design one input MF set. Trapezoidal functions are used 
here. The output MF sets are created based on the fault 
codes. Number of these MFs in a set depends on the 
number of the codes concerning particular element. 
Triangular functions are used here. The path leading from 
the highest tree node (root) to the leaf is converted into 
the fuzzy logic rule. In our approach it contains numbers 
of the MFs, which must have membership degree greater 
than zero to make the rule active.  

Selection of the fuzzy logic enables us to consider 
elements’ tolerances and uncertainties related to the de-
noising operation and decision making. They are 
addressed by the input MFs in the rule detecting “fault-
free” state. Their flat fragments determine the tolerance 
regions. Coordinates of these functions are calculated 
based on the values of the stamp in the node threshold 
[4]. Multiple experiments for the “fault-free” state in A 
allow determination of the “safe area” in the stamps’ 
variable space. Additionally, function’s transitional 
regions (slopes) help to avoid false alarm. Example of the 
input MF set is in Fig. 4. The MF determining the 
tolerance region is grayed. Both transitional regions and 



flat fragment coordinates are parametrized, so they can be 
adjusted for the particular SUT. 

 

 
Fig. 4. Exemplary input MF set. 

 
 Although the decision tree structure imposes only 

single decision (fault code), fuzzy logic allows multiple 
detections. Every set of the output MFs (responsible for 
the information about the particular element’s state) is 
processed independently on the others. Result of the 
analysis is the set of the numbers – every one related to 
certain fault source. Example of the output MF set is in 
Fig. 5. Every function in a set is related to the fault code 
(in Fig. 5 there are codes for the second element). 
Information about the element’s state is the number 
within [-2,6 2,6] range (function coordinates are 
calculated as in [4]), where values close to zero indicate 
the element is in the nominal state (function “0” is 
active).  
 

 
Fig. 5. Exemplary output MF set. 

 
Important modification driven by the multiple fault 

detection is introduced, i.e. fuzzy logic based on the 
multiple decision trees [4]. Fuzzy logic based on the 
single decision tree binds rules and firing more than one 
of them is difficult (though possible [4]). Multiple trees 
allow firing many rules at the same time, making multiple 
faults detection feasible. The idea is to create one 
decision tree for every fault source and then bind them 
into one fuzzy logic structure. Two solutions are 
possible. The first one divides learning experiments 
matrix into submatrices, one for every fault source. For 

every submatrix the decision tree is designed and 
subsequently fuzzy logic module created. This approach 
gives acceptable results for the SUTs, where multiple 
faults are easily distinguishable in responses (as for the 
DC-motor [4]). When responses are smooth and stamps 
for simultaneous faults are hard to determine, the second 
approach gives better results. This approach was applied 
for the servomechanism example. Multiple decision trees 
are created based on the whole matrix. For every fault 
source codes in the last column are altered. All faults 
other than currently selected get common code to 
distinguish them from the element, for which the tree is 
generated. This way the decision tree sorts examples with 
only few codes: these referring to the current fault source 
and one for the rest of the elements. The procedure is 
repeated for every fault source. Design of the MFs is 
performed the same way as explained above. This time 
stamps’ values and fault codes are extracted from all of 
the trees to obtain one fuzzy logic module. 
 
Example: This example shows transformation of the 
learning matrix A of the servomechanism from Fig. 2 to 
design multiple decision trees. For the clarity only 
fragment of the matrix is considered. Assume the last 
column of A has the form presented below. The trees 
created for every element are based on the modified 
columns (all but current element get ‘99’ code). For the 
exemplary 1st tree we have three faults classified: 11, 12 
and 99. This way six decision trees (one for every 
element) were created for the servomechanism.  
 

Original 
codes 

11 
12 
-21
22 
-32
-31 

Codes for 
the 1st tree 

11 
12 
99 
99 
99 
99  

Codes for 
the 2nd tree 

99 
99 
-21 
22 
99 
99  

Codes for 
the 3rd tree 

99 
99 
99 
99 
-32
-31 

 
Servomechanism is difficult to diagnose because of 

the feedback loop which suppresses changes in the object 
responses caused by the elements values deviations. This 
makes parametric faults detection impossible. Through 
experiments we found that the optimal diagnostic results 
require excitation signal with uniform spectrum in the 
whole servomechanism’s operating frequency interval. 
Among unit step, sinusoid, polynomial signals and Sa(αt) 
function, only the latter fulfills the condition (in [7] 
sensitivity analysis also confirmed that only this function 
useful). The spectrum band depends on the α parameter. 
The highest operating frequency of the SUT is 8 Hz. 
Above this constraint the SUT is unable to repeat input 
signal on the output. To make diagnostics possible, we 
decided to excite the SUT with Sa function of 15 Hz 
frequency. The best results were obtained by the 
combination of the fast excitation and opening feedback 
loop. SUT becomes then an integrator with impulse 



response as in Fig. 6. For the fault simulation, the 
elements’ values were changed within range ensuring 
stability of the SUT. 

 

 
Fig. 6. Impulse response of the servomechanism after opening feedback 

loop. 
 

 
Fig. 7. Response of ϕ’1 and ϕ’1 in the open loop configuration 

 
To examine the method two matrices were prepared: 

learning matrix for design of the decision making module 
and testing matrix to determine diagnostic quality. Both 
were of the same size (42 rows and 79 columns for the 
closed loop and 42 rows with 21 columns for the open 
loop servomechanism), containing identical number of 
examples for every faulty element. The diagnostic quality 
was determined by the fraction between the correct 
detections and all analyzed experiments. SUT was 
analyzed after closing and opening feedback loop. The 
results for the optimal diagnostic configuration (open 
loop and fast excitation) are in Table I (single faults) and 
Table II (multiple faults). For the closed loop 
servomechanism as stamps (total seventy eight) we 
selected maximum values of ϕ1, ϕ1’, ϕ2, ϕ2’ and instances 
of their zero crossings (Fig. 3). The stamps for the open 
loop servomechanism (total twenty) are in Fig. 6 and Fig. 
7. Results are output MFs values multiplied by 100 for a 
better readability (results are between –200 and 200 for 
too small and too large elements’ values). Bold fonts 
indicate correct diagnostic outcomes, while italics are for 
errors.  

 
TABLE I  

RESULTS OF SERVOMECHANISM SINGLE FAULT DETECTION 

Faults Output membership functions responses 
Cs Ds d12 K J1 d10 

Cs=5e-1 -1,81E+02 2,36E-15 2,36E-15 -1,16E-17 2,36E-15 2,36E-15 

Cs=2 -4,64E+01 1,96E-15 1,96E-15 -9,11E-16 1,96E-15 7,66E+01

All OK -1,25E-03 2,50E-15 1,92E+00 3,11E-15 2,49E-15 2,49E-15 

Ds=8e-3 -2,90E-15 -1,95E+02 2,36E-15 -1,16E-17 2,36E-15 2,35E-15 

Ds=7e-2 -2,90E-15 1,00E+02 2,36E-15 -1,16E-17 2,36E-15 2,36E-15 

d12=2e-5 -2,20E-03 2,45E-15 2,35E+00 2,23E-01 2,45E-15 2,45E-15 

k=3,9 -2,90E-15 2,36E-15 2,35E-15 -8,07E+01 2,35E-15 2,35E-15 

k=6,9 -2,90E-15 2,36E-15 2,32E-15 8,06E+01 2,35E-15 2,35E-15 

J1=5e-5 -2,90E-15 2,36E-15 2,36E-15 -1,16E-17 -1,81E+02 2,36E-15 

J1=3,6e-4 -2,90E-15 -1,81E+2 2,36E-15 -1,15E-17 2,36E-15 2,36E-15 

J1=7,1e-4 -2,90E-15 2,36E-15 2,12E-15 -1,16E-17 1,00E+02 2,36E-15 

d10=1e-4 -2,90E-15 2,36E-15 2,36E-15 -1,16E-17 2,11E-15 -1,81E+02

d10=3e-4 -2,90E-15 2,36E-15 2,37E-15 -1,16E-17 2,36E-15 -1,00E+02

 
TABLE II  

RESULTS OF SERVOMECHANISM MULTIPLE FAULT 
DETECTION. 

Faults Output membership functions responses 
 Cs Ds d12 k J1 d10 
Cs = 1.5  
Ds = 2e-2 -6.23e+1 -6.15e+1 -2.89e-15 -3.46 2.35e-15 2.35e-15

Cs = 4 
d12 = 7e-5 2.73e+1 2.36e-15 -3.94e+1 2.60e-1 -6.07e+1 2.35e-15

Cs = 6 
J1 = 9e-5 -2.89e-15 2.36e-15 1.17e-12 2.70e+1 -6.30e+1 -4.27e-15

Ds = 7e-2 
d10 = 1e-4 2.75e+1 2.36e-15 2.35e-15 -2.70e+1 1.67e-13 -6.31e+1

Cs = 4.5 
k = 9 2.74e+1 2.36e-15 6.47e-15 -2.70e+1 2.37e-15 -6.30e+1

d12 = 4e-5 
J1 = 5e-5 -2.89e-15 -5.84 -3.19e-15 2.70e+1 -6.30e+1 -5.89e-15

 
The results for the SUT tested using integral 

sensitivity analysis [7] varied between 70 and 85 percent, 
depending on the particular element, except d12, which 
formed ambiguity group with Cs. Results obtained by our 
architecture for the SUT with closed loop were 
comparable, giving 75 percent quality. Opening loop 
increased diagnostic efficiency, giving 90 percent of the 
correct decisions. It also confirmed difficulty in detecting 
changes of d12 element. It has large tolerance - over 50 
percent [6], so its changes are hardly detectable in the 
signal responses. Results for the architecture are better 
than in the compared method. The denoising method 
applied by us is also more universal (it tackles wide 
classes of noise, where integral sensitivity has problems, 
for example, with the gaussian noise). For the multiple 
fault detection output MFs are more active with one or 
two outputs pointing at the fault source (values above 
25). Most faults are detected correctly, in some cases one 
masks another. The method versatility issue is addressed.   

 
 



V. DIAGNOSTIC QUALITY ASSESSMENT 

Flexibility of the architecture allows for different 
methods and algorithm to be used for the particular stages 
(Fig. 1). Introduction of efficient method assessing the 
diagnostic quality is required to compare methods. The 
learning and testing data sets are matrices of equal size. 
Every row of such a matrix contains measurement data 
(stamps) for one experiment. Because SUT model 
simulation is costly, size of the matrix must be minimum 
and provide acceptable diagnostics quality. A coefficient 
considering size of the set is needed. There are 
coefficients proposed and applied to industrial processes 
assessment [13] (another option, especially for frequency 
measurements, is the usage of the probability distribution 
function [14]). The simplest one is the ratio of correct 
fault detections with respect to all detections. We modify 
it by adding exponential factor:  
 

%,100)exp(2 ⋅−⋅⋅= R
R
R

Q c     (6) 

 

where |R| is the number of the fault detections 
(experiments) and |Rc| is the number of the correct 
detections. Due to the exponential factor the smaller data 
sets for learning are preferred. The optimal experiments’ 
number must be determined for every SUT and for the 
servomechanism it was 7.  

Another problem is the choice of the experiments for 
learning and testing data sets. They must reflect SUT’s 
work regime and be representative sample of the common 
faults. Completeness of the learning data influences 
generalization ability of the decision trees and quality of 
the generated module. Applying different testing matrices 
to the SUT diagnostics helps to determine optimal sets of 
experiments. This should be investigated further. 

 

VI. CONCLUSIONS 

The paper addressed traits and problems of the 
automated diagnostic architecture automation, versatility 
and quality assessment. The approach proposed for the 
diagnostics utilizes existing artificial intelligence and 
machine learning methods and algorithms which can be 
automated. Versatility of the method was confirmed by 
numerous SUT analyses. Examination of the 
servomechanism gave satisfying results and proved 
usefulness of the proposed architecture. It is generic 
enough to fit characteristic traits of different SUTs. 
Particular methods, i.e. WT and decision tree-based fuzzy 
logic are flexible enough to de-noise signals and detect 
faults in different objects, including multiple fault location. 
Disadvantage of the wavelet selection and fuzzy logic is 
low speed, crucial for on-line applications. Therefore 
simple modules are preferred. Other methods for fuzzy 
logic design (such as rough sets) should be examined. 
Quality assessment proposed for the task is based on 
existing coefficients, but considers specific aspects of our 

approach. It prefers small learning set giving the best 
diagnostic results.  
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