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Abstract - Statistical multi-parameter circuit simulation is
used in this work, in order to estimate the fault detection
probability in cases where double analogue measurements are
utilized. Theoretical analysis for the estimation of the
detectability is given, based on conditional probability
calculations. The proposed technique can also be applied for
test measurement selection. Simulation results from the
application of the method on an analogue filter circuit are
given, showing a sufficient improvement over the detectability
achieved by single measurements.

Index Terms - analogue circuits, probabilistic analysis,
analogue testing, filter design theory and applications, signal
detection and estimation

1. INTRODUCTION

Statistical circuit analysis and various “simulation-
before-test” approaches, which include “fault dictionary”
and other pattern matching techniques, can be used for
analogue fault detection and diagnosis. The computational
capabilities of today’s computers are rapidly and
impressively increasing and are, thus, opening up new
horizons to the practical application of these methods.

Statistical methods have been proposed for analogue
circuit design, optimization, fault detection and input
stimulus determination [1-9]. For the statistical circuit
analysis multiple circuit simulations are performed for
various nominal and faulty circuit parameters under certain
tolerance bounds using circuit analysis tools based on
circuit simulators (for example SPICE). Monte-Carlo
techniques are also utilized. The emerging “measurements”
are analyzed using statistical and probabilistic mathematics,
so that the results are more realistic, including possible
device variations.

In this paper statistical multi-parameter circuit
simulation and probability mathematics are used for the
estimation of fault detectability by double analogue
measurements. Following the proposed technique the fault
detectability estimation can be efficiently applied for
double measurements resulting in an increased value (up to
13,5%) compared to the fault detectability achieved by
single measurements, while computational time is only
slightly increased by less than 2%. In the following, the
theoretical analysis of the proposed calculation of the
probability of fault detection for double analogue
measurements is described. Results from current
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measurements on an analogue filter circuit are then given
and discussed.

II. THEORETICAL ANALYSIS

Let’s denote with ¢ the number of faulty cases on the
set of faults of a circuit with known topology and parameter
value deviations and with m the number of the
measurements to be used. By applying the Multi Parameter
Circuit Analysis shell Program MPCAP [6] for multiple
Monte-Carlo analysis with the desired s samples, the
arithmetic mean (i) and the standard deviation (o) for each
faulty case and for each measurement can be obtained. The
number of circuit analysis needed is large ((c+1)*s), but it
can be acceptable since they are performed off-line.

The calculation of fault detectability Dy using equation
(1) is based on the calculation of an overlapping integral as
it has been analytically presented in our previous work [10]
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where Dy is the measure of fault detectability for the k
measurement. The higher the value of Dy, the more efficient
fault detection using the k measurement can be achieved.

The estimation of fault detectability for double
measurements, which is generally different from the fault
detectability of each single measurement, can be calculated
using a probabilistic approach. The initial idea for this
approach has been briefly introduced in our previous work
[6]. Let X be the event that the k measurement concludes
to successful fault detection, in other words that the k
measurement in a faulty circuit do not overlap with the k
measurement in the non faulty circuit. It is obvious that the
probability of this event equals to the measure of fault
detectability for the k measurement calculated above
(equation 1), i.e. P(Xy) = Dy.

The fault detectability of double measurements k
and | can be expressed as the probability of the event that
these two measurements together conclude to successful
fault detection. This means that the distribution of either the
k or the 1 measurement in a faulty circuit do not overlap
with the k or the 1 measurement, respectively, of the non
faulty circuit. This probability can be noted by P( X, + X,) .

Since the events Xj and X, are considered not mutually



exclusive, the following equations (2) and (3) are valid

[11].
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Using equation (3) in equation (2), the fault detectability
P(X, +X,) becomes:
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where p( X, ( X/) is the conditional probability of the X

event under the assumption that the X, event is true, and it
is the only unknown coefficient.

The calculation of this conditional probability relies on
the calculation of an overlapping integral similar to the one
referenced above, except that the normal probability
density function of the k measurement must be derived only
from those Monte-Carlo cases for which the | measurement
concludes to successful fault detection or, in other words,
the X, event is true. This condition may reduce the number
of cases for the calculation of the normal probability
density function when the P(X;) has small values, and
therefore the results may become inaccurate.

It is known that the probability function has values in
the range from 0 to 1 and that:

P(x,)+ P(x,)=1 )

Thus when the P(X;) has small values (<0.5), the p(yl)

has a value greater than 0.5 and vice versa. Therefore,
p( X, + X/) should also be expressed as a function of the

P(X_k|71)’ in order to overcome the problem of the

reduced number of cases for the calculation of the normal
probability density function of the conditional probability.
Equation (5) is also valid for the ( X, + X/) event as

P(x, +X,)+ P(x, + X, )=1 ©)

According to DeMorgan low and equation (3) above, it is
also:

P, +x,)=P(x, X, )= PY.[x,  P(x))
Combining equations (6) and (7), it can be easily proved

that: _
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It must be noticed that in the above analysis for the
calculation of fault detectability of double measurements
the roles of k and | can be interchanged resulting in the
following two alternative equations for the calculation of

follows:
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In order to have more realistic and accurate results, the
p( X, + X/) must be retrieved by the calculation of the

proper conditional probability using the maximum number
of samples. Thus, the number of Monte-Carlo cases used
for the calculation of the conditional probability is always
greater or equal to s/2. The worst case would be to reduce
the number of Monte-Carlo cases s to one half, in the
extremely rare case where:

P(x,)=P(x,)=P(x,)= P(X,)=05 (11)

The probability P( X, + Xz) must be calculated for

each faulty case and for each pair of measurements. The
sum of these probabilities for all the faulty cases divided by
the number of faulty cases ¢ is a measure of the fault
detectability for the double measurements k,I:
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The higher the value of Dy, the more efficient fault
detection can be obtained using the k and 1 measurements
simultaneously. The computational time required for the
calculation of the fault detection probability is negligible
compared to the computational time needed for the multiple
circuit analysis. The method can be extended to three or
more measurements, but the probabilistic mathematics
becomes much more complicated, while the results are only
slightly improved, as it will be discussed in the next
section.

III. RESULTS AND DISCUSSION

The above described method has been applied for the
calculation of fault detectability in several circuits and has
been used for test measurement selection as presented in
the following. The commonly used three stage active filter
circuit, shown in figure 1, triggered by a triangular 20Vp-p,
1kHz input signal, was simulated. Component parameters
were considered with normal distribution with 36 equal to
5% of their nominal values, while model parameters had
the same distribution with 30 equal to 10% of their nominal
values. The set of faults consists of 32 hard faults (open-
circuits and short-circuits); the measurements used were the
rms values of the positive power supply current waveform
and the values of the first five harmonics of its spectrum in
dB, so the total number of measurements was Six.
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Fig. 1 The examined three stage active filter circuit of the exam ple.

Component parameters are represented by the resistor
and capacitor values, while model parameters are
represented, for example, by the beta values of the
transistors included in the analytical opamp model. All of
the 32 hard faults are affecting the values of the discrete
components of the circuit. The circuit was simulated using
the MPCAP shell program with 500 samples per Monte-
Carlo analysis and the arithmetic mean and standard
deviation matrices were obtained.

The fault detection probabilities Dy of each
measurement using equation (1) are shown in table I.
Measurement 1, the rms value of Ipg, gives the higher fault
detection probability (89.4%) while measurement 2, the 1st
harmonic of the Ips spectrum, gives the smaller one
(79.1%).

TABLE 1
FAULT DETECTION PROBABI LITY OF SINGLE MEASU REMENTS
OF THE THREE STAGE ACTIVE FILTER CIRC UIT EXAMPLE

K 1
Dy 89.4

2
79.1

3
86.7

4
82

5
83.1

6
83.6

Following the method described in the previous
section, the probability of fault detection Dy, for all the
possible 15 pairs of measurements were calculated as
shown in table II. It must be noted that the detectability of
double measurements is always greater than the
detectability of each corresponding single measurement, as
expected. The improvement in detectability between Dy or
D, and Dy are given in table II (rows 3 and 4). This

improvement ranges from 2,8% to 13,5%, showing a
remarkable enhancement on the fault detectability. The
double measurements (4,5) gives the highest detection
probability (93.2%), while the double measurements (4,6)
gives the lowest (88%). The additional computational time
required for the calculation of the fault detection
probability using the previous described equations to check
the double measurements is only about 2% of the time
required for the circuit simulations.

Using the above results for test measurements selection
it is clear that if the circuit must be tested by only one
measurement, then the rms Ipg value should be used, which
gives the highest (89.4%) fault detection probability.
Testing the circuit with double measurements, the third and
forth harmonics of the Ips spectrum (pair 4,5) must be used,
increasing fault detection probability to 93.2%. This
percentage difference (3.8%) seems small provided that
fault detectability has already very high values (almost
90%). However its contribution is rather valuable
considering that it usually helps to discriminate the most
difficult to detect faulty cases.

In case where three or more measurements were used,
fault detectability is only slightly improved by about 0.2%,
as it was found by separately checking the number of
detected faults over the 500 cases of the Monte-Carlo
analysis. Thus, taking also into account the increase in the
mathematical and computational complexity and that fault
detectability has already very high values, the use of more
than two measurements becomes inefficient.

TABLE I
FAULT DETECTION PROBA BILITY OF DOUBLE MEASUREMENTS OF THE THREE STAG E ACTIVE FILTER CIRC UIT EXAMPLE

Pair 1,2 1,3 1.4 1,5 1,6 2,3 2,4 2,5 2,6 3,4 3,5 3,6 4,5 4,6 5,6
Dy 92.6 [ 924 [ 929 | 92.3 | 92.2 | 92.6 | 838.1 | 89.5 [ 88.2 | 92.2 | 92.7 [ 92.2 | 93.2 88 92.9
Dy - Dx 32 3 3.5 2.9 2.8 | 13.5 9 104 | 9.1 5.5 6 5.5 11.2 6 9.8
Dy - Dy 13.5 ] 5.7 ] 109 { 9.2 8.6 5.9 6.1 6.4 4.6 | 102 | 9.6 8.6 10.1 4.4 9.3




IV. CONCLUSIONS

Statistical multi-parameter circuit analysis and
probabilistic mathematics has been efficiently utilized for
the estimation of fault detectability of double analogue
measurements in a simulation-before-test approach. The
additional computational time is negligible compared to the
computational time needed for the multiple circuit analysis,
while fault detectability is enhanced up to 13,5% compared
to the one calculated by single measurements. In cases
where fault detectability has already very high values, the
benefit is not focused on the increase of its value but on the
fact that the additional faults that are distinguished lay
among the most difficult to detect faulty cases.

The results were efficiently used to select the pair of
measurements with the highest detectability among a given
set of measurements. The work could also be used for input
stimulus selection, by applying the described procedure for
various inputs. The method could be extended to three or
more measurements but the fault detectability enhancement
seems to be insignificant compared to the additional
mathematical and computational complexity.
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