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Abstract.  In this specific paper a methodology 

for detecting sensor failures in building energy 
management systems is presented. The fault 
diagnosis decision criterion is the average 
absolute prediction error between the actual and 
the predicted values of the sensor. Τhe predicted 
value is calculated by a model based on normal 
operation data. Three experiments are presented 
with simulated biases in the temperature, 
illuminance and CO2 sensors. Although the 
concept is simple, the results for fault detection 
are quite satisfactory. 
 

Index Terms: Fault detection and diagnosis, sensors, 
building energy management systems. 

I.  INTRODUCTION AND STATE OF THE ART 
The complexity of systems deployed on modern 
buildings, necessitates the use of  optimal control. 
During the last years, there is a rapid convergence of 
the technologies of Informatics, Microelectronics 
and Control Systems leading to novel approaches 
and solutions for energy and building automation 
related problems [1].  
As the ‘intelligent building’ is passing nowadays its  
phase of maturity, a great number of manufacturers 
offer integrated solutions (i.e. the ORCA system of 
Delta Controls based in BACNET architecture, 
SIEMENS EIBUS, ABB, etc).  
The fault detection and diagnosis (FDD) technology 
provides the capability to deal with complex 
problems that are related with the uninterrupted 
operation of various systems even even in a fault 
regime. 
The uninterrupted system operation is based on the 
normal operation of each of the system parts. In 
building energy and indoor environment 
management systems these parts are: (i) sensors, (ii) 
actuators and (iii) interfaces and software. 
A significant effort has been put in fault detection 
and diagnosis in sensors.  The conventional method 
for detecting sensor failures is to check the 
consistency of the redundant measurements, estimate 
expected values from measurements, and detect, 
isolate, and characterize the type of anomaly in the 
measurement channel output. 

 
Fault detection and diagnosis of building HVAC 
systems usually uses data from sensors to get 
information on whether the system has faults or not. 
A Building Energy Management System usually 
stores the sensors measured data and is accessible 
from an FDD system. The use of measured data 
leads to different  FDD systems. These can be either 
knowledge- ([2], [3]) or model-based ([4] [5], [6]). 
In the present paper an attempt for fault detection in 
building energy management system sensors 
algorithm is presented around the SIEMENS EIBUS 
architecture. The fault detection algorithm is based 
on specific measurements taken by a test bench 
especially developed for simulation of the indoor 
environmental parameters while using BEMS. 

II.  PROBLEM STATEMENT 
The problem that we are facing is the detection of 
sensor failures of the control system depicted in Fig. 
1. A and P on Fig. 1 denote the actuators and the 
plant respectively. The equations representing Fig. 1 
are: 
Nonlinear state equation: ( )1 ,  ,k k k kx f x u d+ =  

Measurements with noise: k k ky x n= +  
 
Controller: ( ),k ku g r y=   
The state space vector is: 
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Fig. 1. The control diagram 
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where, 
Tin the indoor temperature (°C) 
Tmr the mean radiant temperature (°C), [7] 
hin the indoor relative humidity (%) 
vin the indoor wind velocity (m/s) 
lin the indoor illuminance levels (lux) 
Cin the indoor CO2 concentration (ppm)  
The output vector is i i iy x n= +  and the control 
vector are: 
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where, 
S: the shading opening ranging from 0 to 1. 
W: the window opening with a 0-100% range. 
AC: the air conditioning operation duration (0-100% 
of the sample time). 
L: the lighting level (0-1). 
The disturbances vector is (indicative): 
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where, 
tout: the outdoor temperature (°) 
sd: the number of smoking people 
np: the number of occupants 
vout: the outdoor wind velocity 
dout: the outdoor wind direction 
od: the opening and closing of doors 
lout:the outdoor illuminance 
hout: the outdoor relative humidity 
tapp: the thermal casual gains. 
The only disturbance measured is the outdoor 
temperature. The outdoor wind velocity, wind 
direction and humidity are considered constant due 
to the lack of sufficient measurements. The opening 
and closing of doors and the number of occupants 
are also taken constant. The thermal casual gains are 
estimated by the relevant bibliography [7]. The 
controller that is used is a fuzzy controller developed 
for BEMS with inputs: The Predicted Mean Vote 
(PMV) for thermal comfort [7], the CO2 for indoor 
air quality and the indoor illuminance for visual 
comfort. The reference signals of the controller are: 
the PMV index should be within -0.5 and 0.5, for 
CO2 is 800 ppm and for indoor illuminance 500 lux  
[8].  

The performance criteria for the fault diagnosis 
system are the following: 
 Capability of detecting multiple faults in different 

sensors simultaneously. 
 Detection speed. 
 Number of fault alarms or non detection of 

existing faults. 
 Size of the detecting fault. 

The proposed solution is based on a function δy 
which represents the difference between the 
predicted value (yp) and the actual value (ym) of each 
measuring variable: 
δy=yp-y m       (4)  
 
Τhe predicted value is calculated by a model based 
on normal operation data. For the specific fault 
detection and diagnosis system the predicted value is 
a linear combination of the system’s variables, given 
by the following equation:  
 
yp(k)= yp(k-1)+β1⋅f1(u(k-1), yp(k-1), d(k-1)) +…+ βm⋅ 
fm(u(k-1), yp(k-1), d(k-1))    (5) 
 
where k is the time of sampling,  f a non linear 
function, u the actuators’ values vector that influence 
the value of each specific sensor, y the measured 
values of the sensors, d the measured values of 
disturbances and βi the coefficients values that are  
estimated using the least squares method. It should 
be noted that Eq. 5 is different for each sensor.  
The equations used for each environmental variable 
are the following: 

A.  CO2 concentration 
The CO2 concentration at time k is considered a 
function of the concentration at time k-1, the opening 
of windows W and the outdoor CO2 concentration. 
The outdoor CO2 concentration is considered 
constant. Therefore:  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 1 2, out 2

2 1 2 2

CO CO 1 1 CO CO 1

CO 1 1 1 CO 1

k k W k k

k W k W k k

β

β β

⎡ ⎤= − + ⋅ − − − =⎣ ⎦
= − + ⋅ − + ⋅ − ⋅ −

     (6) 

B.  Indoor illuminance  
The indoor illuminance at time k is considered a 
function of the shading opening S, the indoor electric 
lighting level L, and the outdoor illuminance. The 
outdoor illuminance varies significantly and cannot 
be considered constant.  

( ) ( ) ( )1 21 1outIll k S k Ill L kβ β= ⋅ − ⋅ + ⋅ −  (7) 

C.  Indoor Temperature 
The indoor temperature at time k is considered a 
function of the indoor temperature at time k-1, the 
window opening W and the air conditioning level 
AC. The window opening contributes through the 
temperature difference between outdoors and 
indoors. 
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D.  Relative Humidity 
The relative humidity at time k is  considered a  
function of the relative humidity at time k-1, the 
window opening W, the air conditioning level AC 
and the outdoor relative humidity. 
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III.  DECISION FUNCTION 
The decision function is the average absolute 
prediction error (MAE) defined in the following 
equation: 

ε (k)=│yp(k)-ym(k)│     (10)  

The MAE is compared to an upper value which is 
calculated by the sample data under normal 
operation with the use of the following equation: 
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where N is the sample size.  The methodology 
followed to decide whether there is a fault in the 
sensors or not is the following: 
 At time k  the function εnw(k)  is calculated based 

on the equation: 
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where nw is the window length used to robustify 
the procedure. 

 If ( ) ˆ
wn k cε ε> ⋅  then there is a fault in the 

specific sensor, otherwise not. If the error 
condition remains for a significant number of 
samples then the fault certainty increases. 

The parameters  nw and c are estimated using trial  
and error in order for the overall procedure to satisfy 
the performance criteria. In the specific study 
nw=100 and c=2.   

IV.  DIAGNOSTIC RESULTS 
Three experiments are performed using the data 
collected by a test bench especially developed for 
testing control algorithms in BEMS. The test bench 
is depicted in Fig. 2 and is equipped with the 
following sensors: (i) temperature, (ii) relative 
humidity, (iii) CO2 concentration, (iv) indoor 
illuminance, (v) mean radiant temperature and (vi) 
indoor wind velocity. Since the test bench has 
limited space comparing to a room, the sensors are 
positioned in the centre of the bench. The test bench 
is connected with MATLAB and it controls 
automatically its heating and cooling requirements, 

its indoor lighting levels by movable shading devices 
and its indoor air quality by movable windows. 
In each experiment a simulated bias of -40% in the 
corresponding sensor was effected at time k=20. For 
each sensor  three graphs are produced(Fig. 3-Fig. 
13: 
1. The evolution of the decision criterion, i.e. the 

windowed average absolute mean error (MAE) 
(blue line in upper graph)   together with its 
upper level for each sensor (red line in upper 
graph). This graph shows that a malfunction of a 
sensor is not detected as a malfunction of another 
sensor or is mistakenly detected. 

2. The evolution of the predicted (red line in middle 
graph) and actual values (green line in middle 
graph). 

3. The evolution of the actuators value in order to 
have an indication of bad performance for the 
diagnosis (lower graph). 

The simulation time step is 120 sec. The 
disturbances are measured or taken by the 
bibliography for simplification of the procedure. The 
variations of the measured parameters are not 
significant in a room or a building zone. The window 
shading and ventilation operates with motors. 
 

A.  Malfunction of indoor temperature sensor 
The problem in the operation of the temperature 
sensor is detected only for the specific sensor as it is 
shown in  Fig. 5 (MAE for Tin  is higher than its 
upper level). No fault is detected for all the other 
sensors (Fig. 3, 4 and 6) apart from relative 
humidity. The reason for the detection of error in 
relative humidity sensor is that the relative humidity 
model is estimated with W equal to 20% and the 
model does not recognize the 40% of window 
opening that occurs at time k≈180. This can be 
overcome if the learning data are improved.  

B.  Malfunction of indoor illuminance sensor 
The malfunction of the indoor illuminannce sensor 
does not cause fault alarms for any of the other 
sensors as depicted inFig. 7, Fig. 9 and Fig. 10. In 
Fig. 8 the MAE for illuminance is higher than its 
upper level indicating the fault of the specific sensor. 

C.  Malfunction of CO2 sensor 
The malfunction of the CO2 sensor is not detected as 
depicted inFig. 11. The reason for that is again the 
poor prediction data. A false alarm appears for the 
illuminance sensor (Fig. 13) while the relative 
humidity sensor is between the limits  (Fig. 12). 

V.  CONCLUSIONS 
The proposed system is operating satisfactorily  
although it is fairly simple. Some shortcomings can 
be corrected if the influence of the outside 
disturbances is minimized.  This can be achieved if 
they can be measured.  Further improvements can be 



 

effected by a more appropriate training set for each 
sensor (persistent excitation). 
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Fig. 2. The test bench  
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Fig. 3. Evolution of CO2 for malfunction of the 
temperature sensor 
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Fig. 4. Evolution of illuminance for malfunction of the 
temperature sensor 
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Fig. 5. Evolution of indoor temperature for malfunction of 
the indoor temperature sensor 
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Fig. 6. Evolution of relative humidity for malfunction of 

the indoor temperature sensor 
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Fig. 7. Evolution of CO2 for malfunction of the 
illuminance sensor 
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Fig. 8. Evolution of illuminance for malfunction of the 
illuminance sensor 
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Fig. 9. Evolution of indoor temperature for malfunction of 
the illuminance sensor 
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Fig. 10. Evolution of relative humidity for malfunction of 

the illuminance sensor 
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Fig. 11. Evolution of CO2 for malfunction of the CO2 
sensor 
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Fig. 12. Evolution of illuminance for malfunction of the 

CO2 sensor 
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Fig. 13. Evolution of relative humidity for malfunction of 
the CO2 sensor 


