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Abstract— In this paper, we consider optimal resolution of 
air traffic (AT) conflicts. Aircrafts are assumed to cruise within 
a free altitude layer and are modeled in 3-D dimensions with 
variable velocity and proximity bounds. Aircrafts cannot get 
closer to each other than a predefined safety distance. We 
consider the problem of solving conflicts arising among several 
aircrafts that are assumed to move in a shared airspace.  

For such systems of multiple aircrafts, we are interested in 
optimal path, i.e. we want to minimize the total flight time by 
avoiding all possible conflicts. This paper proposes one 
formulation of the multi-aircraft conflict avoidance problem as 
a mixed integer non linear programming problem. In our case, 
only velocity changes are admissible as maneuvers. 
Nevertheless in subsequent work we will be checking for 
simultaneous velocity and heading angle changes too. 
Simulation results for realistic aircraft conflict scenarios are 
provided.  

 
 

 
Index Terms – Free Flight, Collision Avoidance, Non Linear 

Mixed Integer Programming. 
 

I. INTRODUCTION 

A. The concept of Free Flight 

S UPPOSE that sometime this year two US airliners find 
themselves on a collision course. An air traffic controller 
relying on rapidly deteriorating 1960s-vintage 

equipment must distinguish the two planes from others on 
his radar screen and make a mental calculation about the 
likelihood of a crash. Though his radar display is two-
dimensional, the controller must envision the planes [1] 
flight paths in three dimensions, then project the paths 
through time. He must take into account that, say, one plane 
is turning sharply and rapidly descending, while the other is 
slowly climbing. Alarmed, he'll quickly get on his radio to 
instruct one of the pilots to change course. Only if his 
message isn't garbled or drowned out or misunderstood will 
an accident be averted. 
 Now imagine the same scenario 15 years from now. 
Both planes carry satellite-based navigational equipment 
that identifies their positions with precision far outstripping 

radar's. Instead of passing information by voice, pilots rely 
on digital communications gear that automatically transmits 
a constant flow of data about the planes [1] location, 
direction, and speed to controllers and other nearby aircrafts. 
Surveillance and data processing equipment on the ground 
and aboard the aircraft projects the planes' flight paths over 
time, instantaneously making the same calculations that the 
2005 controller struggled to do in his head. Long before the 
two aircrafts seriously threaten each other, cockpit displays 
in both planes warn the pilots of the potential conflict and 
recommend course changes.  
 Welcome to "free flight," the aviation community's 
term for changes that constitute the most significant 
development in air traffic management since the 
invention of radar 70 years ago. Under free flight, many 
tasks now carried out by air traffic controllers will be 
automated, and some of the authority that controllers possess 
will be shifted to pilots. Not surprisingly, the engine driving 
free flight is digital technology, which has laid bare the 
obsolescence of the current air traffic control system.  

B. Free Flight Advocates 
 The Federal Aviation Administration, which oversees the 
US air traffic control system, has embraced the concept but 
may have a hard time persuading Congress to allocate the 
many billions of dollars that free flight will probably 
cost. Thanks to past debacles in developing air traffic 
management technology, the FAA's credibility is notoriously 
low, to the point that proposals for privatizing the agency 
are filtering through Congress. 

C. Reasons for Free Flight 

Airlines aren't the only potential beneficiaries. Paul 
Fiduccia, president of the Small Aircraft Manufacturers 
Association, thinks that free flight soon could help make 
flying a small plane almost as simple as driving a car. 
The result, Fiduccia believes, is that general aviation for 
personal and business use could enjoy an upsurge in 
popularity after 15 years of stagnation. "What we're trying to 
do is feed the fruits of the digital revolution into airplanes," 
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Fiduccia says. "If we do, you'll be able to fly a plane after a 
couple months of training. You'll have the same operational 
simplicity that you have in a car with cruise control. You get 
the plane in the air, you sit there, and you talk with your 
passengers for a few hours until you get to where you're 
going."  

 The FAA sees free flight's projected efficiencies as a 
way of coping with growth in passenger traffic, which the 
agency projects - perhaps overoptimistically - at 7 percent a 
year over the next decade. Free flight might reduce 
congestion at the nation's most crowded airports by enabling 
planes to land with less spacing between them. The National 
Air Transportation Association's Coyne thinks free flight 
could even eliminate the need for air traffic controllers, 
saving the federal government up to $5 billion a year. 
While other officials are far less sanguine about the safety of 
a system shorn of all controllers, some believe free flight 
would make likely a downsizing from the current workforce 
of 17,000 controllers. Nevertheless, even that prospect has 
not led the controllers union, the National Air Traffic 
Controllers Association, to oppose free flight. Instead, union 
leaders have expressed tempered enthusiasm. 

D. Phases of Free Flight 
 The task force's report, issued last October, calls for the 
introduction of free flight in three phases spread over a 
minimum of five years. In the first phase, extending 
through 2005, air traffic controllers would yield some of 
their authority and enter into a more collaborative 
relationship with airlines and pilots. Rule changes that do 
not require extensive investments in new technology would 
be instituted. For example, when a busy airport such as 
Chicago's O'Hare experiences a storm, controllers typically 
decide the order in which all of an airline's planes land. 
Chicago may be the final destination of most passengers in 
one plane, while half the passengers in another plane may be 
hoping to make connecting flights. Controllers, however, 
aren't aware of such passenger configurations, and, in any 
event, they're trained to sequence landings on a first-come, 
first-served basis. They may allow the plane filled with 
passengers bound for Chicago to land while the other plane 
circles overhead. Under free flight, controllers would 
simply inform each airline how many landing slots it 
could use during the storm, and the airline would decide 
the order in which its planes land. That change alone 
would save passengers thousands of wasted hours and 
airlines many millions of dollars.  
 Under the second phase, projected from 2005 to 2010, 
airliners no longer would be limited to the rigid flight 
paths now prescribed by the FAA. Instead, they could 
choose the routes that best fit their needs. A cargo plane 
might choose a route that maximizes speed or fuel 
efficiency, even if that means flying through a storm. A 
passenger plane flying between the same two airports might 
choose to ensure passenger comfort by avoiding the storm at 
a sacrifice in speed. While controllers would continue to 
have responsibility for keeping aircrafts from colliding, they 
would be instructed to approve all proposed routes as long 

as the planes maintain "separation" - the aviation term for 
collision avoidance. To do this, controllers would need 
digital "conflict probe" technology that tracks planes' 
projected courses and warns of potential conflicts.  
 It's in the third phase, optimistically projected to begin 
in 2010 and end perhaps a decade later, that free flight's 
full potential could be realized. Pilots no longer would 
need to ask controllers for permission to make route 
changes, and they'd even take on some responsibility for 
separation. Each plane would be considered to be 
surrounded by two hockey-puck shaped volumes of space, 
one inside the other. When conflict probe technology detects 
an intruder entering a plane's larger volume, known as the 
"alert zone," the two pilots and the ground controller would 
be warned to consider evasive action, while the smaller 
volume, called the "protected zone," would be considered 
inviolate. The size of a plane's zones would depend on the 
accuracy of its technology and its performance capacity: the 
more advanced the plane, the smaller the zones.  
 Though it's too early to predict the size of the zones, they 
almost certainly would be much smaller than the five miles 
of horizontal separation that the FAA now mandates for 
planes in mid-flight. Planes would be free to fly at speeds 
and altitudes that maximize their performance, instead of 
being hung up behind slower planes on prescribed air routes. 
Today controllers often begin shunting aircrafts into line for 
landing at busy airports when the planes are as far as 600 
miles from their destination, but digital sequencing tools 
would enable planes to fly at higher, more fuel-efficient 
altitudes until as close as 90 miles before landing. 

II. PROPOSED  FREE FLIGHT SCENARIO 

A. Conflict Resolution Strategy 
 Many approaches have been proposed in the last few 
years to address the conflict resolution problem when 
many aircrafts are involved; a complete overview of these 
approaches with a complete bibliography may be found 
in [2]. For an extensive study on the impact of Free Flight 
on safety we refer the reader to the work developed at 
NASA Ames by Bilimoria [3], in which is proved that the 
Free Flight environment is safer for the current traffic in 
terms of possible conflict respect to the current airspace 
structure. 
 The approach proposed in this paper involves 
centralized, numerical optimization. We consider the 
problem of resolving conflicts arising among many 
aircrafts following a cooperative approach i.e. all aircrafts 
involved in a conflict are able to communicate intent with 
each other, so that they may follow an agreed upon 
maneuver (such as change velocity) which is proven a-
priori to be safe. The communication between aircrafts 
does not currently exist, although in emergency situations 
aircrafts can currently communicate through an emergency 
radio frequency, but it will in the near future with the 
proposed Automatic Dependence Surveillance – Broadcast 
(ADS-B), in which each aircraft broadcasts to all other 
aircrafts in its vicinity its current state as well as intent in 



 
 

 

the form of its two proposed way points. 
 The algorithms of this paper do not require any 
additional structure to the airspace than what currently 
exists. Each aircraft is surrounded by two virtual hockey 
pucks, the protected zone and the alert zone, shown in 
Figure 1. A conflict or loss of separation between two 
aircrafts occurs whenever the protected zones of the 
aircrafts overlap. The radius and the height of the en-
route protected zone are currently about 2,5 nautical miles 
and 2,000 ft respectively. However, it has been proposed 
in [4] that for true 3-dimensional free flight, protected 
zones need to be spheres of radius about 3-5 miles. The 
size of the alert zone depends on various factors including 
airspeed, altitude, accuracy of sensing equipment, traffic 
situation, aircraft performance and average human and 
system response times. The alert zone should be large 
enough to allow a comfortable system response but also 
small enough in order to avoid unnecessary conflicts. 
What is more, the size of the protected zone is direct 
reflection of the position determination accuracy. 
 For the algorithms in this paper, we have considered 
aircrafts randomly distributed on a three-dimensional 
spherical alert zone of radius 67,1 nautical miles and a 
spherical protected zone of radius d/2 = 2,8 nautical miles. 

 
 
Fig. 1.  Aircraft zones 
 
 The approach presented in this paper, is based on the 
following central assumptions: 

• Aircrafts are assumed to cruise in a non fixed 
altitude layer. The task of each vehicle is to 
reach a given goal configuration from a given 
start configuration. 

• All interacting aircrafts cooperate towards 
optimization of a common goal, as agents in the 
same team. The common goal is to reach the final 
configuration while avoiding all possible 
conflicts. This applies to all aircrafts in the same 
airspace, defined as a zone in which they can 
exchange information on positions, velocities and 
goals.  

• We study aircraft maneuvers consisting of 
instantaneous velocity changes.   

 The problem of finding the shortest conflict-free paths 
can be modeled as a Mixed Integer Programming (MIP) 
problem, which may be solved using optimization tools 
such as CPLEX [5]. 
 The simplicity of the model allows us to manage a 

large number of aircrafts in the same airspace. 
Furthermore, due to the efficient computations used to 
solve the problem, we can rerun the problem at regular 
sample times to generate a feedback control law. Conflict 
avoidance constraints that are considered in this problem, 
are based on geometric constrains. 

B. Problem Statement 
 We consider a finite number n of aircrafts sharing the 
same airspace; each aircraft is an autonomous vehicle that 
flies in a 3-dimensional plane. Each aircraft has an initial 
and a final desired configuration and the same goal which is 
to reach the final configuration in minimum time while 
avoiding conflicts with other aircrafts. A conflict between 
two aircrafts occurs if they are closer than a given distance 
d. 
 As we mentioned before, by considering the aircraft as a 
moving sphere of radius d/2, the condition of non conflict 
between aircrafts is equivalent to the condition of non 
intersection of the spheres. To gain a quick understanding of 
this problem, let’s take a look at what happens when two 
spheres are touching. As we can see in the illustration at the 
Figure 3.2, the radius of each sphere now also defines the 
distance its center to the opposite sphere’s skin. So, given 
this condition, the distance between the centers would be 
equal to Radius1+Radius2. If the distance were greater, the 
two spheres would not touch. If it where less, the spheres 
would intersect. In the following we refer to those spheres as 
the safety sphere of the aircraft. 

 
  
Figure 2.  Spheres in touch  
 
 Aircrafts are identified in a 3-D coordinate system 
representing the center of the sphere (position) and 2 angles 
representing the space direction, by a 5-dimensional vector 
as follows: 
                  . 11),,,,( xSIRxIRxIRxSzyx ∈φθ
Let ))(),(),(),(),(( tttztytx iiiii φθ  be the configuration of the 
i-th aircraft at time t; A conflict between aircrafts i and j 
occurs if for some value t, 
 
  .        (1)    

since: (radius1+radius2) = (d/2+d/2) = d. 
))()(())()(())()(( 222 dtztztytytxtx jijiji <−+−+−

 To avoid possible conflicts, we allow aircrafts to change 
the velocity of flight but the direction of motion remains 
fixed. We will refer to this case as the Velocity Change 
problem (VC problem). 
 Each aircraft is allowed to make a maneuver, at time t = 0, 
to avoid all possible conflicts with other aircrafts. We 
assume that no conflict occurs at time t = 0; 
 Let’s define by qi the velocity change of the i-th aircraft. 



 
 

 

The problem consists in finding a minimum velocity 
change qi, for each aircraft, to avoid any possible conflict 
while deviating as little as possible from the original 
flight plan. The problem considered can be formulated as a 
mixed integer nonlinear optimization problem with 
nonlinear constraints and some Boolean variables. In the 
following section we formulate conflict avoidance 
constraints that are nonlinear in those velocity variations qi. 
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where,  πθ 20 ≤≤ i  and πφ ≤≤ i0 . 

z
C. Conflict Avoidance Constraints for the VC problem 

 In this section we obtain, by geometrical considerations, 
the conflict avoidance constraints for the VC problem. The 
VC problem consists of aircrafts that fly along a given fixed 
direction and can maneuver only once with a velocity 
variation. The i-th aircraft changes its velocity by a quantity 
qi that can be positive (acceleration), negative (deceleration) 
or null (no velocity variation). Each aircraft has upper and 
lower bounds on the velocity

variation. The i-th aircraft changes its velocity by a quantity 
q

max,min,: iiii max,min,: iiii

i that can be positive (acceleration), negative (deceleration) 
or null (no velocity variation). Each aircraft has upper and 
lower bounds on the velocity υυυυ ≤≤ . For 

commercial flights, during en route flight we usually 

have 1.0
min,

min,max, ≤
−

i

ii

υ
υυ

. The problem then is to find an 

admissible value of qi, for each aircraft, such that all 
conflicts are avoided and such that new velocity satisfies the 
upper and lower bounds. (For the VC problem in 2 
dimensions, i.e. aircrafts flying on a plane, see [6]). Hence, 
given the initial velocity iυ , after a velocity variation of 
amount qi the following inequalities must be satisfied: 

υ1

φ
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θ

x
 

 
Figure 3.: Velocity vector  
 
  The non-parallel straight lines that are tangent to the 
spheres of both aircrafts, localize a segment in the direction 
on motion of 1 (refer to Figure 4). We refer to this segment 
as the cone of aircraft 2 along the direction of 1. A conflict 
occurs if the aircraft 1 and its safety sphere intersect the 
cone generated by aircraft 2, or vice versa. 
 

 

 
 

max,min, iiii q υυυ ≤+≤                                       (2) 

 
 
 We will originally restrict to the case of two aircrafts, to 
obtain conflict avoidance conditions and then we will 
consider the general case of n aircrafts. Consider two 
aircrafts denoted by 1 and 2, respectively and 
let ),,,,( iiiii zyx φθ , i = 1, 2 be the aircrafts positions and 

directions of motion and iυ  be the initial velocities. 
 Referring to Figure 3, we consider the two velocity 
vectors: Figure 4. Cone sections between two moving spheres 
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 We refer to the above case, by examining the motion of 
two spheres in 2-dimensions because of symmetry, in the 
plane defined by vector sG , which represents the distance of 
the two spheres centers, and by 12υ

G
 the vector of relative 

speed of motion among the 2 flying aircrafts. (Refer to 
Figure 5). 
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 Consider now the two non-parallel straight lines that are 
tangent to the discs of both aircrafts. Let α be the angle 
between the first straight line and the horizontal axis, and ω 
be the angle between the vector 12υ

G
of relative speed and the 

vector sG  which represents the distance of the two spherical 
centers.  



 
 

 

 

 
 
Figure 5. The two non parallel straight lines tangent to the safety discs of 
radius d/2 for two aircraft at distance A12 

Figure 5. The two non parallel straight lines tangent to the safety discs of 
radius d/2 for two aircraft at distance A12 
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 To obtain non conflict constraints for n aircrafts we need 
to consider the non conflict conditions described by (6) and 
(7) for all possible pairs of aircrafts. Let’s consider the pair 
of aircrafts (i, j). We have to distinguish between two 
possible cases: 1)  0<• sijυ  and 2)  0>• sijυ  . We 

also have
ijij A

d
A

d
==

2

2)tan(α , where Aij is the distance 

between the two aircrafts i and j. So, we obtain the 
following groups of constraints: 
Case 1:  0<• sijυ     AND ωtan  has “positive sign” 
 



















≤•∗−












 •
−∗

≤•

0)(1

0
2

s
A
d

s

s
s

s

ij
ijij

ij
ij

ij

υ
υ

υ
υ

υ

            (8)                                              

or  



















≤•∗−












 •
−∗−

≤•

0)(1

0
2

s
A
d

s

s
s

s

ij
ijij

ij
ij

ij

υ
υ

υ
υ

υ

            (9)                               

Case 2:  0>•− sijυ   AND ωtan  has  “positive 

sign” 
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 These two groups of constraints will be included in the 
model as or-constraints. All constraints obtained are 
nonlinear in the variable that represents the velocity 
change qi. To conclude with the problem formulation we 
must consider the upper and lower bounds in (2) that are 
already linear in qi.  
 As noted earlier, only one set of constraints will be used 
in our model for each instance. Thus, subject to which of 
cases (1 or 2) holds true, we use the first set (8-10) or the 
second set (9-11) of equations.  
 In the case of negative sign, for the tangent , by 
using analogous reasoning, no conflict between all n 
aircrafts occurs if: 
Case 1:  0<• sijυ   AND ωtan  has “negative sign” 
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Case 2:  •− sijυ   AND ωtan  has “negative sign” 
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 Only one of these sets of constraints will be used in our 
model for each instance. Thus, according to which of two 



 
 

 

cases (1 or 2) holds true, we will use the first set (12 and 14) 
or the second set (13 and 15) of equations.  
 If the goal of each aircraft is to avoid all possible conflicts 
in minimum time then we want to maximize the value of qi 
such that if qi is negative we minimize the admissible 
deceleration. 
 In order to formulate this as a minimization problem we 
choose: 
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 as the cost function. 
 Obviously a solution to the conflict problem does not 
always exist, for example in the case of head-to-head 
conflict a change of velocity is not sufficient to solve the 
problem. 

D. Problem Formulation 
 The set of constraints obtained in the above sections are 
nonlinear in the decision variables qi for the VC problem. 
Because we have a very large number of constraints that 
increases exponentially with the number of aircrafts 
involved, it is imperative that we use a software 
optimization package in order to solve it. There are, indeed, 
many such tools available. We have chosen the GAMS 
software package (www.gams.de), which is essentially a 
front end for solvers such as CPLEX, dicopt etc. Its friendly 
interface and accessibility make it an ideal tool for the user 
who does not wish the full processing power of professional 
high-end products. 
 We now show how the above set of constraints should be 
recast as mixed integer nonlinear constraints suitable for 
standard optimization software such as CPLEX.  We assume 
that the reader is familiar with the basics of linear and non-
linear optimization problems. 
 As any other optimization package, GAMS, requires that 
the constraints present for any problem are all satisfied 
simultaneously (together with the constraints). In other 
words GAMS is able to solve optimization problems of the 
form: 
      min                                                   (17) )(xf
such that 
                                                            (18) 0)( ≤xg
where  is a function of n real variables 

 and is subject to a set of 

inequality constraints  ( , j = 1, 2, p). 

This means that the constraints  must be all valid at 
the same time (g1 AND g

)(xf
xx ,( 21
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2 AND … AND gp). Clearly in our 
case, where we have or-constraints, a reformulation is 
necessary. We therefore shall have to introduce new 
Boolean variables to convert these or-constraints to and-
constraints. A simple example will be presented for 
comprehensive purposes. 
        Let us assume that we have the following sets of 
constraints similar to the conflict avoidance constraints 

described in the previous sections: 
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where the terms c , i 7,...,1=i  are linear or nonlinear 
expressions in the decisions variables. 
The way to transform these or-constraints is to introduce 
Boolean variables [7]. Let  with k=1, 2, 3 be a binary 
number that becomes zero when one of the or-constraint is 
active and 1 otherwise (i.e.  if constraints c  and 

 are active, 

kf

1f 0= 1

2c 11 =f otherwise). Letting M be a large 
arbitrary number, the previous set of constraints is 
equivalent to: 

011 ≤− Mfc  

012 ≤− Mfc  

023 ≤− Mfc  

024 ≤− Mfc                                 (22)                       

025 ≤− Mfc  

036 ≤− Mfc  

037 ≤− Mfc  

2321 ≤++ fff  
 The above constraints are all and-constraints so we have 
overcome the previous difficulty. It is however obvious that 
now we are faced with a so-called Mixed Integer 
Programming (MIP) problem [8], because we have two 
different kinds of variables: normal variables that can take 
any value and binary variables ( ) that can only take 
the values 0 or 1. MIP problems are considerably more 
complex than both the Pure Integer Programming problems 
(where the decision variables can only take binary values) 
and the classic LP or NLP problems.  
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III. SIMULATION AND CASE STUDIES 

A. Introduction 
 As shown, in the previous sections, given the initial and 
the final positions and the goal configurations of aircrafts we 
can easily obtain a mixed integer nonlinear problem, for 

http://www.gams.de/


 
 

 

solving the 3-D VC conflict avoidance problem. In this 
section we report the results obtained using CPLEX to solve 
the VC problem. We considered aircrafts randomly 
distributed on a sphere of radius 67.1 nautical miles. We 
consider a non-symmetric case. 

 Since aircraft 1 is moving in a straight line with a 
standard velocity υ1, we have a linear equation. In time “t” 
aircraft 1 “travels” an interval “s”, so we have: 

ts 1υ=                                                               (24) 
 Using the fact that in the same time “t”, we have:  The initial configuration of every aircraft consists of its 

velocity and its 2 heading angles at the point of entry in the 
sphere, while its final configuration consists of its velocity 
and its 2 heading angles at the point of exit in the sphere. 
Such kind of points, have been chosen randomly for a more 
realistic scenario. 
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 Applying equations (4.1) and (4.3) in (4.2) we have: 
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 So, equation (23) now can be rewritten with respect to 
equation (26) as follows: 
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  Hence, each time instant we know at exactly which point 
of a straight line the aircraft 1 is located. We work similarly 
for all others. If the distance between the centers of the 
safety spheres of the aircrafts is smaller than the sum of their 
radius at time t, this means that the aircrafts collide.  Thus, 
by choosing equal small time intervals we detect during each 
one whether a collision occurs.  

Figure 6.  Initial and final configuration points for 2 aircrafts into the 
control sphere 
 
 Basically, collision detection is a system program that 
determines whether two objects will collide inside the 
sphere. If there are more than two objects, then we consider 
all possible pairs of objects.  
 If a collision occurs, the motion of objects should be 
reformulated. Perhaps they should move just enough to 
touch each other (sphere wise). Our calculations take the 
following order: 

B. Case Study: Three Randomly Distributed Aircrafts 
 In the following simulations all aircrafts are assumed 
crossing the control volume with the same speed. The 
control volume has a radius of 67 nm or 108 km and the 
minimum safety distance has been set to 5.6 nm or 9 km. 
Two plots are presented for each case study, one that shows 
the aircraft configuration and their projected trajectories 
before maneuvers are made to avoid possible conflicts and 
the next shows the corresponding situation after the various 
speed maneuvers. Each case study is accompanied by a table 
that shows the velocities of the aircrafts before and after the 
conflict resolution in order to compare the various cases.  

• Future position computation 
• Possible collision detection 
• Collision handling 

 In collision detection we usually want to know whether 
two objects intersect. Consider now, the prediction problem 
as a dynamic one. Two objects are moving relative to one 
another. Their positions are functions of time. We want to 
know exactly when they collide, if it so happens. What we 
want is to define some sort of relationship between the two 
objects that changes as a function of time. Here’s what this 
kind of prediction problem would involve: Referring to Fig. 
6, the initial configuration points for aircrafts 1,2 are 
P1(x1,y1,z1) and P3(x3,y3,z3) respectively, while the final 
configuration points are P2(x2,y2,z2) and  P4(x4,y4,z4) 
respectively. Hence, the parametric equations for the line “l” 
through P1 and P2 are the following: 

 In Figure 7 we see three randomly distributed aircrafts 
which are all headed inside the control volume. The final 
configuration points of them are also presented. In this case 
study, there is one conflict between aircrafts 1 and 2 which 
is resolved by velocity maneuvers of all aircrafts 1 and 2 and 
3; all interacting aircrafts cooperate towards optimization of 
a common goal, as agents in the same team. 
 In Figure 4.3 we see the aircrafts and their trajectories 
after the maneuvers for conflict resolution. It is important to 
remember that an aircraft does not change its trajectory in 
order to avoid a conflict; it just merely changes its speed 
(accelerate or decelerate). This means that in all the 
following plots, identical trajectories between two 
consecutive plots do not imply absence of maneuver in 
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where,  a ),,(),,( 121212321 zzyyxxaaa −−−==  
and “λ” is a variable. 



 
 

 

general, but rather absence of heading angle change. In the 
specific example that we study, the conflicts were resolved 
only by velocity changes. The values of the velocities of the 
aircrafts before and after the conflict resolution are shown in 
Table 1. 
 

 
  
Figure 7. Three randomly 
trajectories before conflict res
where the conflict is detected. 
 

 
Figure 8. Three randomly 
trajectories after conflict reso
changes. 
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( km/min) 

15 15 15 

Change in 
Velocity 
after C.R. 
( km/min) 

-0.703 0.99 0.99 
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aircraft. CR stands for Conflict Resolution. 

IV.  CONCLUSIONS 
 Several conflict resolution maneuvers have been 
3

 

rcrafts and their projected 
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considered and one relative model has been presented (VC). 
 Based on geometric construction of the conflict avoidance 
constraints a linear minimization problem with non linear 
constraints and together with integer variables has been 
obtained. The CPLEX software package has been used to 
solve the problem and due to the fast computation of the tool 
optimal solutions have been found quickly (in very few 
seconds).  
 Future investigations of the optimal maneuvers (velocity 
change and heading angle) in the three-dimensional space, 
in terms of flight time, are part of future work. Due to the 
non linearity that follows from considering heading angle 
and velocity variation, a future work is to consider other 
1

variables and formulate the problem as mixed integer 
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programming. In another direction, more case studies should 
be examined, with more complex configuration patterns and 
a greater number of aircrafts so as to gain more insight in the 
algorithm and the way it works, although the situations 
3
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examined here are realistic. 
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