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Abstract - This paper presents the application of the 
Linear Quadretic Gaussian (LQG) controller to the 
state estimation and feedback of a speed sensorless 
permanent magnet synchronous motor (PMSM) drive 
system. The nonlinear model of the motor has been 
linearized on the basis of field orientation principle. The 
standard Kalman filter technique has been used to 
estimate the speed, position, and load torque by 
measuring only the stator current. The optimal state 
feedback gains and the Kalman state space model have 
been calculated off-line in order to reduce the 
computational burden. The proposed controller has the 
advantages of robustness, easy implementation and 
adequate performance in the face of uncertainties. 
Moreover, the load disturbance can be rejected without 
affecting the overall performance. 
 Computer simulations have been carried out in order to 
validate the effectiveness of the proposed scheme. The 
results show that accurate tracking performance of the 
PMSM has been achieved.  
Index Terms: permanent magnet synchronous motor – 
Linear Quadretic Gaussian  controller- Kalman filter. 
 

NOMENCLATURE 
 

qd vv ,    d-q  stator voltages, 

βα vv ,   βα −   stator voltages, 

qd ii ,         d-q stator currents, 

βα ii ,       βα −  stator currents, 

sR            stator resistance/phase, 

qd LL ,       d-q stator inductances, 

rω     Motor angular speed, 

eω     electrical angular speed, 
p      differential operator, 
P      number of  pole pairs, 
φ       permanent magnet flux  linkage, 
D      viscous friction coefficient, 

LT     Load torque, 
j       moment of inertia 

 
1.   INTRODUCTION 

 
In recent years, permanent magnet synchronous motor  
drives have been widely used in many industrial 

applications such as robots, rolling mills and machine 
tools. The inherent advantages of these machines 
include high power density, low inertia, and high speed 
capabilities. However, the control performance of the 
PMSM is greatly affected by the uncertainties of the 
plant which usually are mismatched motor parameters, 
external load disturbance, and unmodelled and nonlinear 
dynamics [1].  
 
Advanced control techniques such as nonlinear control 
[2], adaptive control [3], robust control [4], variable 
structure control [5], and intelligent control [6, 7] have 
been developed to deal with plant uncertainties under 
various operating conditions. In these control schemes, 
the speed or position signal is necessary for establishing 
the outer speed loop feedback and also in the flux and 
torque control algorithms.  
 
From the viewpoints of reliability, robustness, and cost, 
several approaches have been proposed that address the 
elimination of the mechanical sensors. Some approaches 
are based on the motor equations in order to express 
rotor positions and speed as functions of terminal 
quantities [8, 9]. However, the sensitivity to motor 
parameters is a major drawback of this method. In other 
approach, sensorless PMSM drives have been developed 
on the basis of state observers [2,10,11]. However, the 
overall stability may not be guaranteed in these schemes 
due to certain assumptions introduced, complicated 
controller design, and feedback linearization. In a third 
approach, the estimation of the rotor position and speed 
have been proposed using the extended Kalman filter 
technique [12-15]. However, this method has some 
inherent disadvantages such as the effect of noise 
characteristic, the computational burden, parameter 
sensitivity, and the absence of design and tuning criteria.  
 
In this paper, the PMSM drive has been controlled using 
the LQG controller. The structure of the LQG consists 
of a Kalman filter estimator and optimal state feedback 
gains. The nonlinear model of the motor has been 
linearized according to the field orientation principle. 
All the system states including the speed, position, and 
load torque have been estimated using the standard 
Kalman filter. The stator current is the only measured 
signal. The computational burden has been minimized to 
a large extent by computing the optimal state feedback 
gains and the Kalman state space model off-line. 
Computer simulations have been carried out in order to 
evaluate the effectiveness of the proposed scheme. The 
results proved that the proposed controller can give 



 

better overall performance regarding to high estimation 
accuracy,  quick recover from load disturbance, good 
tracking ability and simple implementation. 
  

2.    MATHEMATICAL MODEL 
 
The dynamic model of the LBDCM can be described in 
the d-q rotor frame as follows [14]: 
 

qeddsd piRV λωλ −+=                                    (1) 

deqqsq piRV λωλ ++=                                    (2) 
Where: 

φλ += ddd iL                                                     (3) 

qqq iL=λ                                                             (4) 

re Pωω =                                                            (5) 
 
The mechanical motion of the PMSM can be expressed 
as: 
 

Lrre TDjPT ++= ωω                                   (6) 
 
Where eT    is the electromagnetic torque developed by 
the machine which is given by: 
 

])([)2/3( qdqdqde iiLLiPT −+= λ              (7) 
 

3.  LINEARISED MODEL 
 
The basic principle in controlling the PMSM is based on 
field orientation. This is obtained by letting the 
permanent magnet flux linkage be aligned with the d-
axis, and the stator current vector is kept along the q-
axis direction. This means that the value of di  is kept 
zero in order to achieve the field orientation condition. 
Since the permanent magnet flux is constant, therefore 
the electromagnetic torque is linearly proportional to the 
q-axis current which is determined by closed loop 
control. As a result, maximum torque per ampere can be 
obtained from the machine in addition to the 
achievement of high dynamic performance. Applying 
the field orientation concept by letting 0=di  in 
equations (1-7), the linearised model of the PMSM can 
be described in a state space form as :   
 

)..).(/1( eqqsqq viRLpi ωφ−+−=                       (8) 

)...5.1).(/1( 2
Leqe TPDiPjp −−= ωφω            (9) 

 
The rotor position dynamics can be expressed as: 
               

ep ωθ =                                                                  (10) 

 

Assuming that the unknown load torque has a slow 
variation which can be modeled satisfactorily as [20]: 
 
                    0.. =LTp                                               (11) 
 
The state equations of the linearised model of the 
PMSM can be written in a matrix form as : 
 
                BuAxpx +=                                       (12) 
                  Cxy =                                                   (13) 
Where : 
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[ ]TqLB 000/1=    ,  [ ]TC 0001=  , 

qvu =      and                   qiy =   . 
 

4. CONTROL STRATEGY 
 
In this paper, the LQG controller has been employed to 
control a speed sensorless field oriented PMSM drive. 
The LQG is a modern state space technique for 
designing optimal dynamic regulators. It has the 
following advantages : 

1) It enables to trade off regulation performance 
and control effort. 

2) It takes into account the process disturbance 
and measurement noise. 

The LQG controller consists of an optimal state 
feedback gain “ k ” and a Kalman state estimator. The 
optimal feedback gain is calculated such that the 
feedback control law  
            [ ]TLq Tikkxu θω−=−=  
 
minimizes the performance index : 

                     ( )dtRuuQxxH TT∫
∝
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0

 

where Q  and  R    are positive definite or semi definite 
Hermittian or real symmetric matrices. The optimal state 
feedback  kxu −=   is not implementable without full 
state measurement. In our case, the states are chosen to 
be current, speed, position and load torque while the 
current is chosen to be the output measured signal. The 
Kalman filter estimator is used to drive the state 
estimation : 
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remains optimal for the output feedback problem. The 
state estimation is generated from [16]: 
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Where L is the Kalman gain which is determined by 
knowing the system noise and measurement 
covariances nQ   and  nR   .  However, the accuracy 
of the filter’s performance depends heavily upon the 
accuracy of these covariances. On the other hand the 
matrices A  and  B   containing the motor parameters 
are not required to be very accurate due to the 
inherent feedback nature of the system. 
The Kalman filter performs best for linear systems. 
Therefore, The nonlinear model of the PMSM has 
been linearised through the use of field orientation 
concept. The optimal state feedback gains and the 
Kalman state space model have been calculated off-
line which results in great saving in computational 
burden. On this basis, the implementation of the 
proposed controller becomes easier and the hardware 
will be reduced to minimum. 
 

4. SYSTEM CONFIGURATION 
 
The block diagram of the sensorless field oriented 
PMSM with the proposed LQG controller is shown in 
figure (1). All the commanded values are 
superscripted with asterisk in the diagram. The 
system can be functionally divided into two parts: 
speed control system and LQG controller. The first 
part consists of  three loops, one for the speed and the 
others for the d-q currents. The speed error is fed to 
the speed controller in order to generate the torque 
current command *

qi  .  The flux current command *
di  

 

 is set to zero to satisfy the field orientation condition. 
The reference currents *

di  and  *
qi  are compared with 

their respective actual currents. The resulted errors 
are used to generate the voltage commands  *

dv  and  
*
qv  which are converted to three phase reference 

values *
av  , *

bv  , and  *
cv  in the stator frame. These 

voltage signals are compared with triangular carrier 
signal and the output logic is used to control the 
PWM inverter.  
 
The second part of the system configuration is the 
LQG controller which consists of Kalman estimator 
in addition to optimal state feedback gains. The 
Kalman estimator uses the measured  q-axis current 
in order to estimate all the states including current, 
speed, position and load torque. These states are 
multiplied by the corresponding optimal gains and 
summed to produce the control signal necessary to 
compensate for the load disturbance and system 
uncertainties. 
 
The entire system has been simulated on the digital 
computer using the Matlab / Simulink / Powerlib 
software package. The motor used in the simulation 
procedure has the following specifications : 
 
PMSM                            : 1 kw, 2-pole, 1500 rpm 
Stator resistance           : 1.55   ohm 
Stator inductance          : 20.5  m.H. 
Permanent magnet flux  : 0.22  N.m./amp. 
Moment of inertia          : 0.0022 kg.m2 

Friction coefficient        : 0.0221 N.m.s/rad 
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Fig. (1) Block diagram of the sensorless proposed scheme 
 



 

The gains of the speed and current controllers are 
chosen as : 
 
Speed loop :                kp = 2     ,     ki = 3 
d-q current loops :      kp = 1    ,      ki = 30 
 
The noise and measurement covariances are set as : 
 nQ  =   0.1     , nR = 0.01 
 
Also, the values of Q  and R  matrices which are 
necessary to calculate the optimal feedback gains are 
set as :        Q  =  [20 100 10 1]       ,  R  = 1. 
 

5.  RESULTS 
 
Computer simulations have been carried out in order 
to validate the effectiveness of the proposed scheme. 
The speed, current, rotor position, and torque 
responses are observed under various operating 
conditions such as change in reference speed, step 
change in load, and parameter variation.  
Figure (2) shows the actual and estimated responses 
of the proposed PMSM sensorless scheme. The 
machine is started from rest and assumed to follow a 
certain speed trajectory. The reference speed is 
assumed to be linear during the first half second until 
1000 rpm is reached, and then kept constant for 1.5 
second. At time t=2 sec., the reference speed is 
increased linearly again with the same initial slope to 
1500 rpm, and then kept constant during the 
remaining simulation time. A load torque of 4 N.m. is 
assumed to be applied initially on the machine and 
stepped to 6 N.m. at t=3.5 second. Also, the stator 
resistance is detuned to 120 % of nominal value. It is 
clear that the estimated speed tracks well the 
trajectory of reference one with good accuracy over 
the whole speed range except at starting. This is due 
to the imperfect estimation of the Kalman filter 
during the transient state where all the signals are 
distorted. Moreover, the high state feedback gains 
amplify the distortion of the estimated signals at 
starting. In addition, the assumption of zero initial 
rotor position is another source of error. 
 
On the other hand, a speed dip is noticed at the instant 
of step increase in load torque, but it is successfully 
rejected within  0.15 sec.  
Also, the following remarks can be concluded from 
the figure : 
a) The unknown load torque is estimated fastly and 
accurately.  
b) The d-axis current is well decoupled from the 
motor speed, and is regulated quite well to be zero. 
c) The rotor position angle estimation is not affected 
by the parameter uncertainties, and a stable machine 
drive can be obtained. 
d) The sinusoidal variation of the 3-phase stator 
currents responds quickly to the change in load. 
 

 However, it seems in figure (2) that there is a 
difference between the actual and estimated rotor 
position which adversely affects the decoupling 
between the d- and q- axes. This is may be attributed 
to the following reasons: 
 
a) The Kalman filter model, and the optimal state 
feedback gains are determined on the basis of the 
linearised model of the motor. 
b) Zero initial rotor position is assumed. 
 
In order to reduce the discrepancy between the actual 
and estimated rotor position, a precise modeling of 
the system is required. Also, a good choice of the 
covariance matrices will improve the filter 
performance. In addition, the knowing of the initial 
rotor position would decrease the error to a large 
extent.  
 

Fig. (2) Simulation waveforms of the proposed
scheme at high speeds with stator resistance

detuned to 120% of nominal value
 (... actual    -  estimated )

di

qi

 
 
 
 
 



 

The robustness of the proposed sensorless scheme has 
been tested at low speeds and mismatched 
parameters. Figure (3) shows the simulation 
waveforms when the speed is reduced linearly from 
100 to 50 rpm (about 3.3% of its nominal ). The load 
torque is assumed to be constant at 4 N.m. during the 
simulation period. Moreover, the stator resistance, 
moment  of   inertia,  and   friction  coefficient are  all 
detuned to 200% of their nominal values, while the 
stator inductance is detuned to 50% only. It is clear 
that good tracking capability and fast responses have 
been achieved in spite of the mismatched parameters. 
However, the difference between the actual and 
estimated rotor position, which has been noticed in 
the figure, is for the same reasons discussed above. 

 

di
qi

 
6.  CONCLUSIONS 

 
This paper presents the application of a high dynamic 
optimal regulator to control the speed and torque of 
the permanent magnet synchronous motor drive 
system without a speed sensor. The concept of the 
field orientation has been applied in order to linearise 
the nonlinear model of the motor. The standard 
Kalman filter technique has been employed to 
estimate the speed, position, and load torque by 
measuring only the stator current. The computational 
burden   has  been  minimized  to  a   great  extent   by 
computing the optimal state feedback gains and the 

Kalman state space model off-line. The proposed 
controller has the advantages of robustness, easy 
implementation and good performance in the face of 
uncertainties. Moreover, the load disturbance can be 
rejected without affecting the overall performance.  
 
Computer simulations have been carried out in order 
to evaluate the effectiveness of the proposed 
controller. The results prove that accurate tracking 
performance of the PMSM has been achieved at low 
speeds as well as high speeds.  Moreover, this scheme 
is robust against the parameters variation and 
eliminates the influence of modeling and 
measurement noises. 
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