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 Abstract-In this paper we consider the decentralized 
load-frequency control (LFC) of a two-area power system. 
The model of the power system is determined, and is viewed 
as an interconnected system (A, Bd), for which the methods 
of the decentralized control are applied; these are based on 
the intercontrollability matrix D(s), its kernel U(s), and the 
equivalent system {M(s), I2} in the operator domain. Based 
on this, a decentralized control via linear programming 
methods, and with decentralized optimization techniques is 
determined. Several responses are given and compared. 

 
Index Terms- Decentralized control, Load-

frequency control, Linear programming, Optimization 
techniques, Static local feedback. 

 
I. INTRODUCTION 

 
 The problem of designing a feedback gain matrix 
for load-frequency control in electrical power systems 
has received considerable attention. Several decentralized 
load-frequency controllers have been developed since the 
1970s ([5],[6], [7], [11], [12], [17], [20]). 

In this paper, we propose a decentralized LFC 
controller based on the stabilization problem with static 
feedbacks of the local state vectors in an interconnected 
power system. It is examined for an interconnected 
(global) system (A, Bd), consisting of two local scalar 
subsystems, under the very general assumptions of the 
global and the local controllability. Only the case of two 
interconnected subsystems is examined, since only in this 
case the global system will have no decentralized fixed 
modes when local feedbacks are applied ([18], [4], [1], 
[2], [9], [10]). Without loss of generality ([4], [18]), we 
assume that both input channels of system (A, Bd) are 
scalar.  
 In the next section we present some preliminary 
results needed in the main development. They concern 
the form of matrices A and Bd, the intercontrollability 
matrix D(s) and its kernel U(s), and -based on this- an 
equivalent, to (A, Bd), system, defined in the operator 
domain. The existence of linear, local, state-vector 
feedbacks (LLSVF), which stabilize the system, is 
formally proven in section III. In this context, and based 
on linear programming methods, their computation is 
presented ([15]). Section IV provides an algorithm 
proposed by Geromel and Bernussou, which based on 

iterative scheme gives a solution to the near-optimum 
decentralized control problem. In section V, first the 
model of the system is analytically developed. Then, the 
system is stabilized with the proposed method, based on 
linear programming, which gives also an admissible 
stabilizing matrix for the traditional method of the 
decentralized optimization techniques, as given in the 
works of Geromel and Bernussou ([12]). Several 
responses are given and compared. 
 

II.  PRELIMINARIES 
 

A. Form of matrices A and Bd 
 We consider the interconnected system (A, Bd) 
defined by     
                     x Ax B ud= +                                            (1) 
where x is the n-dimensional state vector of (A, Bd), u is 
the 2-dimensional input vector, A is the nxn system 
matrix, and Bd is its nx2 input matrix. Matrices A and Bd 
admits the following partitioning:  
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with n=n1+n2. System (A, Bd) consists of the 
interconnected ni- dimensional subsystems (Aii, bii) -
i=1,2- of local state vectors x1and x2, with x=[x1' x2']', u1 
and u2 being, respectively, the scalar inputs of these 
subsystems, with u=[u1 u2]'. We further assume that the 
global system (A, Bd), as well as its two subsystems 
(Aii,bii) -i=1,2- are controllable. In that case, subsystems 
(Aii, bii) are supposed to be in their companion 
controllable form [13]. It is obvious that when the various 
submatrices of (A, Bd) are in the above form, system (A, 
Bd) is called Canonical Interconnected Form, CIF [8]. 
Finally, with the elements of rows n1 and n1+n2 (=n) of A, 
we form matrix Am: 
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B.  The intercontrollability matrix D(s) and its kernel 
The following (n-2)xn polynomial matrix is the 

intercontrollability matrix of system (A,Bd) 
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As the following lemma indicates, D(s) expresses the 

conditions for the controllability of (A, Bd): 
Lemma 1 System (A, Bd) is controllable if and only if rank 
D(s) = n-2 for all complex numbers s. 
For the proof, see [2]. 

Thus, the matrix D(s) of a controllable system is a 
full-rank matrix. Its kernel U(s) is an nx2 polynomial 
matrix of rank 2, such that  D(s) U(s) = 0. The analytical 
determination of U(s) is as follows: P is the matrix 
representing the column permutations of matrix D(s), 
which brings it to the form of the matrix pencil: 

                 ( )D s  = D(s) P =[s In-2 - F | G]     (5) 
In (5) G is an (n-2)x2 (constant) matrix, consisting of 
columns n1 and n1+n2=n of D(s), F is an (n-2)x(n-2) 
constant matrix, and In-2 is the unity matrix of order  n-2. 
Since D(s) is a full rank matrix, the pair (F, G) is 
controllable, and can be brought to its multivariable 
controllable form (MCF) [13], [19] (  by a similarity 
transformation T; let d1, d2 be the controllability indices 
of (F, G), S(s) be the associated structure operator, δ(s) be 
the characteristic (polynomial) matrix of 

, )F G

F , and (in case 
rank[G]=2) let  be the 2x2 matrix consisting of rows dˆ

mG 1 

and d1+d2=n-2 of  . The precise form of U(s) is the 
content of the following lemma: 

Ĝ

Lemma 2 Let D(s) be the intercontrollability matrix of (A, 
Bd) as in lemma (1), and suppose that rank[G]=2, for G 
as in (5). Then the kernel U(s) of D(s) is equal to 
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where P, T, S(s), , and δ(s) are as previously 
explained. 

Gm

 
C.  An equivalent system defined by a PMD. 
 Consider the interconnected system (A, Bd), with A 
and Bd as in (2). In that case, the corresponding 
differential equation in the state space is: 

                                              (7) ( ) ( ) ( )x t Ax t B u td= +
In the operator domain, this equation corresponds to the 
equation            (sI - A) x(s) = Bd u(s)                            (8) 
this, in its turn, is reduced to the equations: 

               D(s) x(s) = 0                              (9a) 
        (sE - Am ) x(s) = u(s)                      (9b)  

In these equations, D(s) is as in (4), E is a 2xn (constant) 
matrix, of the form:  
E =diag{e1' e2'}, the ni-dimensional vector ei being equal 
to : ei = [0...0 1]' -for i=1,2-, and Am is the matrix defined 
in (3). From (9a) it follows that x(s) must satisfy the 
relation: 

               x(s) = U(s) ξ(s)                             (10) 
where U(s) is the kernel of D(s), and ξ(s) is any two-
dimensional vector. It follows that ξ(s) must satisfy the 
equation:                  M(s) ξ(s) = u(s)                             (11) 
The matrix M(s) appearing in (11) is termed characteristic 
matrix of the interconnected system (A, Bd) [8], and is 
defined by the relation:  

           M(s) = (sE - Am) U(s)                        (12) 
The three systems defined respectively (i) in the state 
space by the pair of matrices (A, Bd), (ii) in the operator 
domain by {sI-A, Bd}, and (iii) by the polynomial matrix 
description (PMD): 

             M(D) ξ(t) = u(t)                             (13a) 
        x(t) = U(D) ξ(t)                             (13b) 

are equivalents [13], [9], [3]. It is noted that in (13) ξ(t) is 
the pseudo state vector of the system, and is related to the 
state vector x(t) of (A, Bd), by the relation 

                x(t) = U(D) ξ(t)                             (14) 
(in the relations (13), (14), the symbol D denotes the  
differential operator d/dt). 
 
III. COMPUTATION OF THE LOCAL FEEDBACK 

STABILIZING MATRIX Kd VIA LINEAR 
PROGRAMMING METHODS. 

 
 We first present a result, as lemma (3), which will 
be needed in the proof of the Main Theorem (3). 
Lemma 3. Let h(s) be a polynomial of the form: 
h(s)=r(s)p(s)+q(s), for which the following assumptions 
hold: (i) The polynomials r(s), p(s), q(s) are monic (ii) r(s) 
is arbitrary, (iii) degree r(s)p(s) > degree q(s) (iv) p(s) is a 
stable polynomial. Then, the arbitrary polynomial r(s) can 
be chosen so, that h(s) is stable. 
For the proof, see [16]. 
Theorem 3 Consider the interconnected system (A, Bd) as 
in (1), and suppose that the global system (A, Bd), and the 
local ones (Aii,bii) -i=1,2- are controllable. Then, there 
exists static LLSVF of the form u=Kdx, so that the 
resulting closed-loop system is stable. 
Proof. For the proof we consider the equivalent system 
{M(s), I2} and examine the stability of the polynomial 
matrix Md(s)=(sE-Am-Kd)U(s), by examine whether its 
determinant is a stable polynomial. We assume that the 
feedback matrix Kd has the form: 
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where αi (i=1,...,n1), and βj (j=1,...,n2) are some 
unknown, real numbers. We shall deal with the case where 
rank[G]=2, which is the usual one for the matrix G. 
Without loss of generality, and in order to simplify the 
notation, we assume Am=0 (see also Remark 3.1 after the 
end of the proof). Then the matrix Md(s) takes the form 

Md(s)=(sΕ-Am-Kd)U(s)=(sΕ-Am-Kd) P
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where α(s) = [ α1... αn1-1 0 0 ] TS1(s) 

           α1(s) = [ α1... αn1-1 0 0 ] TS2(s)   
           β(s) = [ 0  ... 0  β1 ... βn2-1 ] TS2(s) 

           β1(s) = [ 0  ... 0  β1 ... βn2-1 ] TS1(s) 
are scalar polynomials, not monic, 

 TS1(s) = T [ 1 s ... sd1-1 0 ... 0 ]' 
 TS2(s) = T [ 0 ... 0 1 s ... sd2-1 ]' 

(i.e., TS(s)=TS1(s) TS2(s)] ,and [ij] -for i,j=1,2- are the 

entries of the polynomial matrix 1ˆ ( )mG δ− . Then the 
matrix in (16) is equivalent to the following matrix: 
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The determinant of this matrix is actually a monic 
polynomial of the form h(s)=r(s)p(s)+q(s), of degree n, by 
identifying r(s) as the polynomial [22][M11(s)+M21(s)], 
which is of degree (n-1), arbitrary and monic, p(s) as the 
polynomial (s-βn2

), which is stable by choice of βn2
, and 

q(s) as the polynomial: 
[M12(s)+M22(s)]M21(s)-[M11(s)+M21(s)]β(s) 

of  degree (n-1). Then, according to lemma (3), the 
arbitrary polynomial r(s) can be chosen so that the 
polynomial h(s) is stable.                                          Q.E.D. 
 Next, we propose an iterative method, in order to 
compute the feedback coefficients [15]. The central idea is 
to compute the feedback parameters by solving a linear 
programming problem, corresponding to choosing 
positive the coefficients of the polynomials that should be 
stable. A set of such polynomials (with positive 
coefficients) is generated. They are then examined 
whether they are stable or not.  
ALGORITHM 
Step1 Choose the feedback parameter βn2

, so that a stable 
p(s) results. 

Step2 Write the polynomial r(s) in the following form: 
         r(s) =sn-1+kρ(s)=sn-1+k(sn-2+k1sn-3+...+kn-2). 

   By viewing the degrees of the polynomials α(s) and 
β(s), it is seen that k -the leading coefficient of the 
polynomial ρ(s)- contains only the parameters βn2 
and αn1

. It follows that by giving a value to k, we can 
also compute αn1

. 
Step3 Form n-2 inequalities with the n-2 unknown 

feedback parameters, by setting positive the 
coefficients ki of the polynomial ρ(s) (ki>0, for i=1, 
n-2). 

Step4 Solve the linear programming problem , by putting 
an  objective function with unity weighting 
coefficients, and  find all feedback parameters αi 
(i=1, n1-1) and βj (j=1, n2-1). 

Step5 Evaluate the polynomial ρ(s), and check if it is 
stable. If it is not, go back to Step 1, and select 
another βn2

. 
Step6 Evaluate the polynomial r(s), and check if it is 

stable. If it is not, go back to Step 2, and select 
another k. 

Step7 Evaluate the polynomial h(s), and check if it is 
stable. If it is not, go back to Step 2, and select 
another k. 

Step8 The feedback matrix Kd can be evaluated from steps 
1, 2 and 4.  

                                           END OF THE ALGORITHM 
REMARKS 
Remark 3.1 : When Am≠0, the proof follows exactly the 
same lines, since the orders of the various polynomials 
remain the same. Now, however, the notation is more 
complicated, since the elements of Am appear in the 
polynomials α(s), β(s), and, additionally, multiply the 
matrix TS(s).  
Remark 3.2: This iterative method probably will give 
large parameters of the feedback matrix Kd. These 
parameters can be changed, by applying an optimization 
algorithm, as the one described in paragraph IV. 
Remark 3.3: The linear programming problem was solved 
via the revised simplex algorithm [14], which is contained 
in the DLPRS subroutine of the IMSL/MATH Library. 
 

IV. DECENTRALIZED CONTROL BY                    
PARAMETRIC OPTIMIZATION  

 
 This section provides an algorithm [12], based on 
iterative scheme, for designing ‘optimal’ decentralized 
control. It is to be emphasized that the algorithm needs to 
be initialized with a stabilizing control, which is the 
feedback matrix Kd of the proposed previously method 
based on linear programming. 
 The problem is to find a feedback matrix Kd such 
that the global system as (2) is stable and that the classical 
quadratic cost function C x  is Qx u Ru= ′ + ′∫ ( )dt

  



minimized, where Q and R are weighting matrices of 
appropriate dimensions, positive-semi definite and 
positive define, respectively. 
 Geromel and Berussou [12] proposed a gradient                                
method  which is summarized below: 
Step1 Determine the gradient matrix ∂ ∂C K Kd d( )/ and 

the feasible direction D=diag{D1, D2 }. 
Step2 Test of convergence -if |{dpq}i|<ε for all p=1; 

q=1,...,ni; i=1, 2; where {dpq}i is the (p, q) entry of 
the matrix Di , stop, if not go to Step 3. 

Step3 Update on Kd (Kd← Kd-αD), where the step size 
α≥0 must selected such that C(Kd-αD)<C(Kd)    and 
go back to Step 1. 

 
V.  A TWO-AREA ELECTRICAL POWER SYSTEM 

 
  We consider the P-f control of a two-area power 
system. The system model was derived in ([6], [11]), and 
its block-diagram is given in Fig. 1 (disregard, for the time 
being, the portions of the diagram marked with dotted 
lines). The model is based on the equations for the power 
equilibrium, the equations for the incremental tie-line 
flow, the equations for the change in generation, and the 
equations for the position of the speed governor. These 
equations are as follows:  
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The meaning, and the values, of the various coefficients of 
(17-20) can be found in the Appendix, at the end of the 
paper.  

 
 
Fig. 1. A two-area power system 
 

For the two area system, the states and the control 
variables are chosen as: 

[ ]′ =x f x P P f x PE g tie E g∆ ∆ ∆ ∆ ∆ ∆ ∆1 1 1 1 2 2 2     (21) 

[ ]′ =u P Pc c∆ ∆1 2                                          (22)    
The basic objectives of the P-f control are zero steady-
state error in the deviation of the frequency and the tie-
line power. In order to achieve them, it is essential to 
consider an integral of the area control error (ACE = 
B∆f+∆Ptie) as a feedback signal. The state vector in (21) 
is augmented with two additional state variables, which 
are defined by: ,  x ACE dt5 1= ∫ x ACE dt9 2= ∫

1

and which satisfy the equations: 

x ACE B f Ptie
.
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We substitute the definition of the states and the controls 
into the nine differential equations that define the two-area 
system. This place the system equations into the form: 

. The matrices A, Bx Ax B u Pd d
.
= + + Γ ∆ D d and Γd of 

dimensions 9x9, 9x2 and 9x2 respectively.  
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The matrix Γd is the disturbance distribution matrix, 
whereas the vector  
                            [ ]∆ ∆ ∆P P PD D D= 1 2                     (24) 
is the disturbance vector. We redefine the states in terms 
of their steady-state values, i.e. xi*=xi-xiss for i=1...9.      

  



This change of variables puts the system into the form 
*=Ax*+Bdu with x*(0)=-xss The matrices A and Bx d 

remain unchanged.  
 In order to prevent unnecessary complications in 
the notation, we drop the superscript (*) in the sequel. 
The eigenvalues of A as in (23) (for the numerical values 
which are given at Appendix) are: -13.29; -13.26; -1.62;    
-1.3±j2.5; -0.5±j3.5; 0; 0. The system is unstable, since it 
has two zero eigenvalues, due to the integrators of the 
secondary control loops. In order to compute a stabilizing 
Kd matrix as in (15), we apply the linear programming 
method. The static feedbacks are shown in Fig. 1, in the 
portion of the figure marked with dotted lines, with k1i=αi 
for i=1...5, and k2i=βi for i=1...4. The method described in 
paragraph III results into the following values: 
 

CIFKd =
− − − −

− − −
⎡

⎣
⎢

⎤

⎦
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25 25 25 25 39 0 0 0 0
0 0 0 0 0 193 25 017 119
. . . . .

. . . .
  

It is remarked that the above values of CIFKd are in the 
transformed system of coordinates (used to apply the 
method based on the linear programming), whereas in the 
initial system of coordinates CIFKd has the values: 
 

Kd =
− − −

− − −
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⎣
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⎤

⎦
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006 031 038 006 002 0 0 0 0
0 0 0 0 0 001 095 097 002
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The system is now stable, since its eigenvalues (i.e. the 
eigenvalues of A+BdKd) are: -8.3; -2.13±j1.35;       
-1.23±j3.71; -0.48±j6.25; -0.018; -0.017. The responses of 
the frequencies ∆f

                     

1 and ∆f2, of the change in the tie-lie 
power ∆Ptie and of the generated powers ∆Pg1 and ∆Pg2, to 
a 1% increase of the load, are shown in the Fig.  2  

 
Fig. 2. Frequency responses  ∆f1(t), ∆f2(t) and the generated powers 
∆Pg1(t) and ∆Pg2(t)  of areas 1 and 2 to a load increase ∆PD1=0.01 pu, 
with the  decentralized stabilizing feedback Kd. 
 
 The settling time of   these responses is out of the 
specifications. So, in step 3 of  the proposed algorithm, by 
changing the  constraints limits of the revised simplex 
method, we achieve a new feedback matrix Kd (referred in 
the initial system of coordinates): 

 

Kd
n =

− − −
− − −

⎡

⎣
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⎤

⎦
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047 103 297 18 059 0 0 0 0
0 0 0 0 0 031 385 326 059
. . . . .

. . . .
 

 The eigenvalues of closed-loop system, (i.e. the 
eigenvalues of A+BdKd) are now: -62.95; -1.03; -0.35; 
-0.6±j0.45; -0.54±j11.03; -0.20±j2.51. The frequency and 
the generated power responses, to a load change of 1%, 
are shown in Fig.  3, which satisfy all the static and 
dynamic specifications. 

 
Fig.3. Frequency responses ∆f1(t), ∆f2(t) and the generated powers 
∆Pg1(t) and ∆Pg2(t)of areas 1 and 2 to a load increase ∆PD1=0.01 pu, with 
the new decentralized stabilizing feedback Kd

n . 
 

In case the feedback elements of Kd are considered 
to be large or the dynamic and static behavior is not so 
‘‘good’’, we make use of the decentralized optimization 
algorithm as in paragraph IV. 

We define the Q and R matrices, necessary in the 
optimization algorithm [12], by defining a set of 
requirements which the system should satisfy: 
1. The static frequency deviation ∆fistat and the static 
change in the tie-line power ∆Ptie, following a step load 
change, must be zero. 
2. The transient frequency deviation should not exceed 
±0.02Hz under normal conditions, and the time error 
should not exceed  ± 3 seconds. 
 Expressing all this in mathematical form, we must 
have the sum of following terms:  

 

( ) ( )∆ ∆f f1
2

2
2+ + + ( )  ( )∆Ptie1

2 (ACE dt ACE dt1
2

2
2

∫ ∫+ )

dt

 
This sum is put in the form x'Qx.   Large control efforts 
are penalized by adding the terms: . This 
requires that the matrix R -corresponding to the term u'Ru- 
is the 2x2 unity matrix. The cost function is defined as 

 

( ) ( )∆ ∆P Pc c1
2

2
2+

C x Qx u Ru= ′ + ′∫ ( )

Since Af=A+BdKd is stable, we apply the decentralized 
optimization technique [12] by selecting properly the 
entries of Q and R matrices for achieving ‘‘better’’ 
responses. This results in an optimal CIFKd

opt
 matrix, with 

the values in the original system of coordinates equals to:  

  



 

Kd
opt =

− − −
− −

⎡

⎣
⎢

⎤

⎦
⎥

003 029 133 131 047 0 0 0 0
0 0 0 0 0 001 039 045 06
. . . . .

. . . .−
 

 
The eigenvalues of A+BdKd

opt are now: -6.31; -5.08±j6.32;  
-1.86;  -1.10 ±j3.31, -0.99±j0.45; -0.73. The frequency 
and the generated power responses, to a load change of 
1%, are shown in Fig.  4. 

 
Fig. 4. Frequency responses  ∆f1(t), ∆f2(t) and the generated powers ∆Pg1(t) 
and ∆Pg2(t) of areas 1 and 2 to a load increase ∆PD1=0.01 pu, with the 
optimal decentralized stabilizing feedback Kd

opt.  
 

From a comparison of the responses as in Fig. 3 
and 4 it seems that the responses in the last are "better" than 
in the other, since they have less oscillatory behavior and 
settling times. It should be also noted that in the last (where 
the optimal decentralized feedback is applied to the system), 
the feedback coefficients are indeed smaller i.e. easier to 
realization.  

VI. CONCLUSION  
 
 In this paper we considered the decentralized 
control of a power system, resulting from the 
interconnection of two local power systems. After the 
system model was determined, it was viewed as an 
interconnected system (A, Bd) for which the methods of the 
decentralized control of interconnected systems were 
applied (intercontrolability matrix D(s), its kernel U(s), 
equivalent system {M(s), I2} in the operator domain, 
stabilization with local state feedbacks via linear 
programming methods and optimization techniques). 
Several responses of the simulated system were finally 
determined and analyzed. 
 

APPENDIX 
 

The two identical control areas have the following system 
data (the method is also applicable to systems that are not 
identical): 
Nominal frequency: f0= 60 Hz 
Total rated area capacity: Pr=2000 MW 
Nominal operating load: PD

0=1000 MW 
Inertia constant: H=5.0 s 
Regulation (4 percent drop in speed between no load, and  

 
full load):  R=2.4 Hz/pu MW 
Load constant (1 percent increase in load, for 1 percent 
frequency increase): D=8.33 x10pu MW/Hz 
Time constant of a non-reheat turbine generator: Tt= 0.3s 
Time constant of speed-governing mechanism: Tg= 0.08s 
Tie-line capacity: Pmax12= 200 MW 
Nominal tie-line power angle: δ1

0- δ2
0=300

Synchronizing coefficient: T12
*=2πT12

0

T12
0= P12

0cos(δ1
0- δ2

0)=0.545 / 2π = 0.087,  
Frequency bias parameter: B=0.425 pu MW/Hz 
Load disturbance parameter: ∆PD= 0.01 pu MW. 
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