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PERFORMANCE IMPROVEMENT OF THE INDUCTION MOTOR DRIVE BY 
USING ROBUST CONTROLLER

S. SELVARAJ, PG Scholar, V. GEETHA, Lecturer, N. DEVARAJAN, Assistant Professor

Abstract -: The transient response of the induction motor 
is obtained by using its d-q reference model.  The transient 
response is improved by using optimal control technique 
because of the property of best possible control.  By 
solving Ricatti equation, a controller gain matrix is 
developed such that the performance index is minimum.  
This gain matrix will give feedback control law.  The 
controller will give control signal according to this law.  
The output is fed back and the response is analyzed.  Thus 
the transient response is improved. This controller is robust 
against disturbances
Index terms – Induction motor, LQR, Stability

NOMENCLATURE

ss IV
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,        Stator voltage and current space vectors

s


           Stator flux space vector

rrI 


,     Rotor current and flux space vectors
Vds, Vqs   Stator voltages in d-q rotating ref. frame
Ids, Iqs     Stator currents in d-q rotating ref. frame
ψdr, ψqr   Rotor fluxes in d-q rotating ref. frame
Ids, Iqs      Stator currents in d-q rotor flux ref. frame
ωr     Rotor speed (rad/s)
Rs, Ls    Stator resistance and self inductance
Lr    Rotor self inductance 
τr                       Rotor electrical Time constant
Lm    Magnetic inductance
P   Number of pole pairs
J   Total rotor inertia constant (Kgm2)
F    Damping coefficient (Nms)
Tl   Load torque (Nm)
Te    Electromagnetic torque (Nm)
σ    Coefficient of dispersion
e            Synchronous speed (rad/s)
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INTRODUCTION

Induction machines have been the most widely used 
machines in fixed-speed applications for reasons of cost,
size, reliability and efficiency. However, because of the 
involved model high nonlinearities, they require much 
more complex methods of control, more expensive and 
higher rated power converters than DC and permanent 
magnet machines. Nowadays, as a consequence of rapid 
advances in power electronics technology, vector control 
strategy based electrical ac drives have emerged as a 
powerful tool for high performance control of Induction 
machines. This control strategy can provide the same 
performance from an inverter driven Induction machine as 
is achieved from a separately excited DC machine.

In this thesis the author introduces a new controller 
called Linear Quadratic Regulator which is robust against 
external disturbances and provides excellent performance 
improvement with the improvement of stability margin. 
The system is simulated using Matlab and its 
characteristics and features are studied in this thesis.

d-q MODEL OF THE INDUCTION MOTOR

A two phase d-q model of an Induction machine rotating at 
the synchronous speed is introduced which will help to 
carry out the decoupled control concept to the induction 
machine. This model can be summarized by the following 
equations
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The stator and rotor fluxes are given by the following 
relations:
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In equations 1 to 4, the voltages, currents and fluxes space 
vectors are function of the corresponding three-phase 
variables [3].  As an example, the stator current space 
vector is linked to the corresponding three phase currents 
by the following relation:
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Where a = e j 2/3.  The produced electromagnetic torque is 
given by
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Figure 1. Reference frames and space vector representation

Using the d-q coordinate system, as illustrated in Figure 1, 
and separating the machine variables state vectors into their 
real and imaginary parts, the well-known Induction motor 
model expressed in terms of the state variables is obtained 
from equations 1 to 6, and is given by:
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In (7), the coefficient of dispersion σ is given by:
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As shown in Figure 1, the d-axis is aligned with the rotor 
flux space vector. Under this condition we have; ψqr = 0 
and ψdr = ψr. Consequently, the induction motor model 
established in the rotor flux field coordinate is then given 
by the equations 9 to 12.
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In ordinary use, only stator voltages, currents and rotor 
speed are available for measurement. In this case, the d-q
stator voltages and currents are obtained from the 
corresponding α−β stationary reference frame variables 
through an appropriate transformation involving rotor flux 
space vector angle θe, as shown in Figure 1. This 
transformation is given by:
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In equation 13, "x" is a voltage, a current or a flux. As 
mentioned before, θe is the rotor flux space vector angle. In 
direct vector control, the rotor flux is available for 
measurement or is estimated from measured stator voltages 
and currents. The rotor flux angle is then given by:
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The rotor flux amplitude is obtained by solving equation 
11, and its spatial position is given by:
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The Indirect vector control strategy can now satisfactorily 
be achieved since both amplitude of rotor flux vector and 
its spatial position are known. As in DC machines, the 
torque and the flux are controlled independently: The 
electromagnetic torque Te is controlled by Iqs (torque 
producing current), and the flux is controlled by Ids (flux 
producing current).

LQR QUADRATIC REGULATOR
A Linear Quadratic Regulator (LQR) is used to determine 
the SVFB K such that the Performance Index J is 
minimized.  It comes under Optimal Control. It is called so 
because in every control step the performance index is 
reduced to a minimum. Furthermore, it has a comparable 
high robustness against parameter changes.

A system can be expressed in state variable form as

BuAxx 
. (14)

With
mn RtuRtx  )(,)( . The initial condition is x (0).  

We assume here that all the states are measurable and seek 
to find a state-variable feedback (SVFB) control.

Kxu 
(15)

That gives desirable closed-loop properties. The closed –
loop system using this control becomes 

BuxABuxBKAx c  )(
. (16)

With Ac the closed-loop plant matrix and u(t) the new 
command input. The output matrices C and D are not used 
in SVFB design. If there is only one input so that m=1, 
then Ackermann’s formula gives a SVFB K that places the 
poles of the closed-loop system as desired. However, it is 
very inconvenient to specify all the closed-loop poles, and 
a technique is needed that works for any number of inputs. 
The optimal controllers require least control energy for 
control the system.
Since many naturally occurring systems are optimal, it 
makes sense to design man-made controllers to be optimal 
as well. To design a AVFB that is optimal, a term
performance index (PI) is to be considered.
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Substituting the SVFB control into this yields
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The objective in optimal design is to select the SVFB K 
that minimizes the performance index J. The performance 
index J can be interpreted as an energy function, so that 
making it small keeps small the total energy of the closed-
loop system. If both the state x (t) and the control input u 
(t) are weighted in J, so that if J is small, then neither x (t) 
nor u (t) can be too large. If J is minimized, then it is 
certainly finite, and since it is an infinite integral of x (t), 
this implies that x (t) goes to zero as t goes to infinity. This 
in turn guarantees that the closed-loop system will be 
stable.

The two matrices Q (an n x n matrix) and R (an m x m 
matrix) are selected by the design engineer. Depending on 
how these design parameters are selected, the closed-loop 
system will exhibit a different response. Generally 
speaking, selecting Q large means that, to keep J small, the 
state x (t) must be smaller. On the other hand selecting R 
larger means that the control input u (t) must be smaller to 
keep J small. This means that larger values of Q generally 
result in the poles of the closed-loop system matrix Ac = 
(A –BK) being further left in the s-plane so that the state 
decays faster to zero. On the other hand, the larger R 
means that less control effort is used, so that the poles are 
generally slower, resulting in larger values of the state x(t).

One should select Q to be positive semi-definite and R to 
be positive definite. This means that the scalar quantity 

QxxT
 is always positive or zero at each time t for all 

functions x (t), and the scalar quantity RuuT
 is always 

positive at each time t for all values of u (t). This 
guarantees that J is well-defined. In terms of eigenvalues, 
the eigenvalues of Q should be non-negative, while those 
of R should be positive. If both matrices are selected 
diagonal, this means that all the entries of R must be 
positive while those of Q should be positive, with possibly 
some zeros on its diagonal. Note that then R is invertible.
The use of Linear Quadratic Regulator (LQR) is to 
determine the SVFB K such that it minimizes the 
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Performance Index J. The word ‘regulator’ refers to tracker 
problems, where the objective is to make the output follow 
a prescribed (usually nonzero) reference command.

To find the optimal feedback K it is proceeded as follows. 
Suppose there exists a constant matrix P such that

xRkkQx
dt

Pxxd TT
T

)(
)(
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(19)

Then, substituting into equation (17) yields,
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Where it is assumed that the closed-loop system is stable so 
that x (t) goes to zero as time t goes to infinity. Equation 
(20) now implies that J is now independent of K. It is a 
constant that depends only on the auxiliary matrix P and 
the initial conditions.
Differentiating (17) and then substituting from the closed-
loop state equation (14) it is seen that (17) is equivalent to 

0)(  xRkkQPAPAx T
c

T
c

T (21)

It has been assumed that the external control v(t) is equal to 
zero. Now note that the last equation has to hold for every 
x(t). Therefore, the term in brackets must be identically 
equal to zero. Thus, proceeding it is seen that

0 PBkPBkRkkQPAPA TTTT (22)

This is a matrix quadratic equation. Exactly as for the 
scalar case, one may complete the squares. Though this 
procedure is a bit complicated for matrices, suppose if

PBRk T1 (23)

Then, it results in

01   PBPBRQPAPA TT (24)

This result is of extreme importance in modern control 
theory. Equation (24) is known as the algebraic Riccati 
equation (ARE). It is a matrix quadratic equation that can 
be solved for the auxiliary matrix P given (A, B, Q, R). 
Then, the optimal SVFB gain is given by (23). The 

minimal value of the PI using this gain is given by (22), 
which only depend on the initial condition. This mean that 
the cost of using the SVFB (24) can be computed form the 
initial conditions before the control is ever applied to the 
system.
The design procedure for finding LQR feedback K is:
Select design parameter matrices Q and R
Solve the algebraic Riccati equation for P
Find the SVFB using 

The matrixes Q and R can be found out by trial and error 
method or using GA technique.  There are very good 
numerical procedures for solving the ARE. The MATLAB 
routine that performs this is named lqr (A, B, Q, R).The 
LQR design procedure is guaranteed to produce a feedback 
that stabilizes the system as long as some basic properties 
hold.

LQR THEOREM:
Let the system (A, B) be reachable. Let R be positive 
definite and Q be positive semi-definite. Then the closed 
loop system (A-BK) is asymptotically stable. Note that this 
holds regardless of the stability of the open-loop system. 
Recall that reachability can be verified by checking that the 
reachability matrix has full rank n.                                                 

.
X=AX+BU

-K

C Y=CX

.                     Figure2. System Block Diagram

SIMULATION RESULTS

Simulations, using Matlab-Simulink software package, 
have been carried out to verify the effectiveness of the 
proposed control method. The results are shown in figures 
3. 4., & 5. Figure 3 shows the unit step response before and 
after applying controller. Figure 4 shows the current curves 
ids and iqs of the motor drive. Figure 5 shows the locations 
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of poles before and after applying controller.  It also shows 
how the stability is enhanced by modifying the pole 
locations.

Figure 3. Response of system before and after applying 
LQR

Figure 4. Response curves of ids, iqs and phidr

Figure 5. Pole locations before and after applying LQR

It is also observed that stability is also analyzed after 
applying the controller.   The results show that the margin 
of stability also increases by incorporating the controller.
The stability tests are carried out using h-infinity definition 
and Lyapunov’s test for positive definiteness.

CONCLUSION 

The simulation of LQR controlled induction motor drive is 
successfully implemented in this paper. The application of 
the controller and its response improvement contributing to 
the stability enhancement is studied.  This paper can be 
further extended by comparing this controller performance 
with the existing controlling methods like PI and so on.
This paper can be further extended to other types of drives 
also enhancing the performance.
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APPENDIX

Induction Motor Parameters
Un (V)   = 440 (Stator line voltage)
Pn (hp) = 100 (Nominal output power)
Rs (Ω) = 0.095
Rr (Ω) = 0.075
Ls (mH) = 16.5
Lr (mH) =  16.4
Lm (mH) =  16
f (Hz) =  60
p = 2
J (kg.m2) = 5


