
Minimising the number of tool switches with tools
of different sizes.

Csaba Raduly-Baka1, Timo Knuutila2∗ and Olli S. Nevalainen2
1) Elcoteq Design Center Oy, Joensuunkatu 13, FIN-24100 Salo, Finland

2) Department of information technology and TUCS, Universityof Turku, FIN-20014 Turku, Finland
*) Corresponding author:knuutila@cs.utu.fi, phone:+358-2-33386365, fax: +358-2-3338600

Abstract— In this paper we address the combined problem
of job-ordering and tool placement, where each tool can occupy
more than one slot of the primary storage magazine. The capacity
of the magazine is limited so that all the tools neccessary in
the production cannot fit into the magazine at the same time,
and the cost of magazine reorganization depends linearly on the
number of tool moves. Our task is to find the order of processing
the jobs and the positions to put the tools in the magazine, so
that the total cost of switching tools from one job to the next
is minimized. We introduce a new heuristic for the problem.
The algorithm hybridizes an efficient tool switching algorithm
based on the matrix permutation problem and a novel two
level storage management algorithm. We compare the proposed
solution method to previous approaches from the literature. Our
comparisons indicate that the new algorithm procudes results
with costs almost a third of the costs produced by algorithms
previosly known in this field.

Keywords: tool management; tool switching; two level storage
management; flexible manufacturing; heuristics; combinatorial
optimization

I. I NTRODUCTION

The problem of increasing the production efficiency in
flexible manufacturing systems by computational means has
become an important aspect of manufacturing with the arrival
of computer numerically controlled (CNC) machinery. While
the kind of machinery is an excellent means of increasing
the degree of automatization in the production, it still leaves
numerous questions open with respect to its optimal usage.
Some of these deal with the tool management which has
clear effect on the operating cost and the productivity of the
manufacturing process.

In particular, we consider the case where a CNC machine
processes a number of jobs with a number of changeable tools.
It is imposed that each job requires some subset of tools for its
processing and that the machine has aprimary tool magazine
with a lower capacity than the number of all different tools
[2]. When proceeding to the next job, the tools used by the
next job must placed in the magazine, if not already there.
Because not all the tools fit into the tool magazine some of
the tools in the magazine may have to be removed to make
room for the tools of the new job.

Flexible manufacturing systems are used in various indus-
tries to achieve efficiency in low volume high-mix product
manufacturing. One example is, in the electronics industry, the
assembly of printed circuit boards (PCB). Each PCB containsa
number of components, and different PCB types are assembled
by the system [5]. One can, in this context, interpret the

component types (stored in component reels, sticks, etc.) as
”tools” and the feeder unit as a ”magazine”.

Various aspects of the tool management have been discussed
in literature. One aspect is the ordering of the jobs so that the
number of required tool switches is minimized. This problem
is also known as thetool switching problem. The problem is
NP-hard even in the simplified case where all the tools are
of the same size, and a number of heuristic solutions have
been proposed in the literature [1]. Thetool-loading problem
considers a case where the job sequence is given, and the goal
is to find a placement and removal order of tools, that the total
cost of required tool changes is minimized. This problem can
be solved optimally in the case of equal tool sizes using the
KTNS (Keep Tool Needed Soonest) algorithm, as showed by
Tang and Denardo [4].

For different tool sizes, the tool-loading problem becomes
NP-hard as showed by Matzliach and Tzur in [6]. This problem
is addressed in the literature also as theDynamic Storage
Management Problem, or DSMP. Because of different tool
sizes, the storage area will become fragmented after processing
a number of jobs, and the question arises how to place the
tools to minimize the fragmentation. The online version of this
problem also appears in operating systems, where the system
memory is shared among various tasks [3]. The offline version
has been discussed in the context of flexible manufacturing
systems [7].

The DSMP has been addressed in literature as the two
level storage management problem in [6] and [7]. In this
problem there are two magazines holding tools, one with
a limited capacity internal to the machine, the other with
an unlimited capacity external to the machine. The primary
(internal) magazine can hold only a limited number of tools,
and if a required tool is not in the primary storage area the
machine must pick it up from the secondary (external) storage
area. This may also involve the removal of some tools from
the primary storage area, see Matzliach and Tzur in [6] and
Hirvikorpi et al. in [7].

The combined problem of job-ordering, tool placing and
tool-loading problems has been studied previously only for
equal tool sizes [9]. The problem is easy in the sense that
the tool-loading and placing can be solved optimally for it.In
real life manufacturing systems it is likely that the tool sizes
are unequal, see [8] for a number of heuristics for solving the
problem.

In this paper we consider a new approach to the job-

ordering, tool loading and placement problem with unequal
tool sizes. Our approach to the problem is similar to that
described by Tzur and Altman in [8], except that we consider a
different combination of job ordering and storage management
algorithms. Our storage management algorithm is based on
the heuristic by Hirvikorpiet al. in [7], with small variations
required by the nature of this problem. For the job-ordering
we modify the heuristic introduced by Djellabet al. in [9].
This heuristic has been used very successfully to optimize
instances of job-ordering problem with equal tool sizes [11].
The original Djellab heuristic is based on the KTNS tool-
loading heuristic which we replace with our own tool-loading
and placement heuristic.

The rest of this paper is organized as follows. In Section
2 we formally specify the problem and its assumptions.
In section 3 the Djellab tool switching heuristic is briefly
described, a detailed description can be found in [9]. Our use
of the Djellab method is neutral in the sense that it does not
take any position on the (equal or unequal) sizes of the tools.
In Section 4, a modified version of the storage management
heuristic of Hirvikorpiet al. [7] is described. In Section 5 we
give the combined heuristics for the tool switching problem
with different tool sizes. Section 6 summarizes the resultsof
numerical tests with the new algorithm, here we observe that
the new algorithm outperforms existing solution by a factorof
3, for large problem instances. Section 7 contains concluding
remarks on the subject.

II. PROBLEM DESCRIPTION

The problem ofJob ordering, tool Loading and tool Place-
ment with unequal tool sizes (JLP for further abbreviation)
has the following parameters:

• N - the number of jobs to be processed.
• M - the number of different tools available.
• C - the capacity of the tool magazine (number of slots)

used as the primary storage area.
• T - set of tools, where each toolt ∈ T has a transfer cost

ct ∈ R
+ which is the cost to move, remove or insert the

tool into the magazine, and a sizest ∈ N which is the
number of slots occupied by the tool.

• A - a job-tool incidence matrix. The size of A isN ×M
and the elementaij of A is 1 if the ith job requires the
jth tool, and0 otherwise.

The goal is to find an ordering of the jobs (job scheduling)
and the placement and loading order of the tools, so that the
total cost of switching the tools between jobs is minimized.
This problem statement omits the lifetime limitations of the
tools. We assume that the tools do not wear and therefore can
reside in the magazine as long as they are needed.

The JLP problem is NP-hard as shown by Matzliach and
Tzur in [6], even in the case where the order of the jobs has
been fixed. The best known heuristic for this problem is the
Aladdin heuristic proposed by Tzur and Altman in [8]. The
Aladdin algorithm combines the job-ordering and the tool-
loading problems into a single heuristic.

We propose an algorithm, in which a job-ordering algo-
rithm is used to sequence the jobs and a two level storage
management algorithm is used to minimize the tool switching
cost of each job sequence. Tzur and Altman experimented in
[8] with various two-stage heuristics, where the job ordering
and tool switching stages were separated. Their tests indicated
that two-stage approaches gave weaker results than a unified
one-stage solution, namely theAladdin algorithm. We will
see that, by choosing the heuristics carefully, one can create
an efficient two-stage approach. We also note that the choice
of storage management heuristic is crucial: most of the job-
ordering heuristics presented in [8] can be improved simplyby
a different choice of the tool storage management algorithm.

III. T HE DJELLAB-GOURGAND TOOL SWITCHING

HEURISTIC FOR EQUAL TOOL SIZES

The novel heuristic algorithm proposed by Djellab and
Gourgand in [9] uses a hypergraph representation of the tool
switching problem. The algorithm solves a weighted versionof
the matrix permutation problem [11]. As presented by Djellab
et al. in [9], the algorithm gives excellent results for the tool
switching problem when the tool sizes are equal.

A major strength of the heuristic by Djellabet al. [9] is that
it is able to consider also an initial partial order of the jobs.
The fact that certain jobs can be processed only after other
jobs is commonly ignored in the tool switching literature.

The Djellab-Gourgand heuristic consists of two major parts:

• Given a priority order in which the jobs are considered
for insertion, create a job sequence so that the number of
tool switches using the KTNS policy is minimized. This
procedure is called theBest Insertion (BI) heuristic.

• In the second part, iteratively try to improve the results
by generating random priority orders and using the BI
heuristic with these priority orders. This procedure is
called theIterative Best Insertion (IBI) heuristic.

In our implementation we modified the Djellab-Gourgand
heuristic to allow different tool sizes. This is necessary due to
the fact that the KTNS policy which is used in the original
algorithm assumes equal tool sizes in order to be optimal.

The reader is refered to [9] for a detailed description of the
original Djellab-Gourgand heuristic. Basically we apply here
the same algorithm with the difference that we do not use
the KTNS policy for tool placement, but theIMTM storage
management algorithm proposed in section 4.

IV. T HE STORAGE MANAGEMENT HEURISTIC

The problem of storage management with different tool
sizes and fixed job ordering has been proved to be NP-hard by
Matzliach and Tzur in [6]. A number of algorithms have been
proposed to solve this problem. In the case of moveable tool
positions Matzliach and Tzur in [6] proposed an algorithm.
The problem becomes even more complicated in the case when
the tools cannot be moved unless involving the tool switching
cost to each move. This problem has been recently addressed
by Hirvikorpi et al. in [7] and they give heuristics to solve the
problem.

We suppose in the storage management problem (with
different tool sizes and magazine reorganization costs) that
there areN jobs to be processed in a predefined order, and
the jobs use in totalM different tools. The task is to determine
a tool switching and placement strategy, which minimizes
the total cost of tool changes. Toolt consumesst slots of
the magazine, and the cost of removing the toolt into the
magazine isct. TheN ×M binary matrixA tells whether the
tool t is used (A(j, t) = 1) or not (A(j, t) = 0) in a job j.
The capacity of the tool magazine isC slots.

In the present paper we implement a heuristic based on
the SMMT-2 heuristic introduced by Hirvikorpiet al. in [7].
We name this algorithmIterative Multi-Tool Manager or
IMTM algorithm. In our implementation we have improved for
efficiency reasons the methodSMMT-2 uses for choosing tools
for removal. This was necessary because storage management
decisions are made repeatedly in theIBI procedure (of the
Djellab-Gourgand heuristic) a great number of times and they
thus become a bottleneck of the joint solution algorithm of the
JLP problem. As to the results produced by the new heuristic
and that of [7], according to our evaluations the solutions are
of similar quality, but the new heuristic runs about 190 times
faster.

A. Removal cost matrix

When cleaning the magazine for new tools, the decisions
on which tools to remove are central to theIMTM algorithm.
In order to save computation time, we precompute a matrix
R of sizeN × M , containing the removal cost for each tool
of each job. Whenever the algorithm has to decide which tool
to remove at a certain job, it uses the removal cost matrix to
choose the tool.

The elements ofR are calculated in a way that resembles
how the KTNS rule is used to choose the tools to be removed,
but now the removal costs are taken into consideration. For
each jobj and toolt let dist(j, t) be the distance to the next
job using the tool. If jobj uses this tool, the distance is 0,
otherwise it is the number of jobs until the tool is used again.
Formally,

dist(j, t) =

0 if A(j, t) = 1
m if A(j + m, t) = 1 andA(j + i, t) = 0

for all i ∈ [0,m), andm > 0
N if A(j + i, t) = 0 for all i ∈ [0, N − j)

If the tool is not used in any of the forthcoming jobs, the
distance is the number of jobsN , so that no other (used) tool
can have this large distance. The tool removal costs (R) are
then given by the following formula which weights the tool
removal costs by their distance to the next use. In this way
we reuse the principle of the KTNS algorithm for tools of
different sizes.

R(j, t) =

{

ct/dist(j, t) if dist(j, t) > 0
α · ct if dist(j, t) = 0

Here α is an arbitrary constant greater than 2, to give the
highest removal cost for tools used by the current job (with

distance 0). The storage management algorithm uses theR
matrix when searching for the block of consequtive magazine
slots with the lowest removal cost, to make room for new tools.
Naturally R is only one (heuristic) measure for favourable
actions to be taken when solving the storage management
problem.

B. Outline of the IMTM algorithm

The IMTM algorithm builds a content of the tool magazine
for each job by considering the magazine from the previous
job, and inserting the tools needed by the job but not already
in the magazine.

The tools are always inserted one by one, into the smallest
available space they can fit. If the magazine does not contain
enough empty space, the algorithm removes from the maga-
zine some tools, which are not needed by the current job, to
make room for the new tool. The choice of the tools to be
removed is made according to the lowest removal cost value
defined byR.

If no room can be made by removing unused tools, the
algorithm removes from the magazine a tool which is required
by the current job, and restarts, trying to insert the new
tools (including the removed one) needed by the current job.
This last step will cause a rearrangement of the tools in the
magazine.

The algorithm tries to build a magazine with limited ca-
pacity for the current job using the tool magazine setting
of the previous job. The algorithm iterates through all jobs
and applies a magazine building procedure for each job. The
magazine is considered to be empty before the first job.

C. Inserting in a free area

The storage management algorithm first looks for available
empty spaces in the magazine for the new tool. This is done
by theInsertFreeArea procedure. Given the size of the tool to
be inserted, theInsertFreeArea searches the magazine to the
shortest sequence of free slots, where the sequence contains
at least as many slots as required by the tool size.

If such an area is not found, the storage management
proceeds with the next step by trying to insert the new tool
over some removable tools.

D. Inserting in a removable area

In order to insert a new tool over some removable tools,
the algorithm must choose which tool can be removed. This
choice is made according to the removal cost values stored in
the R matrix.

Function

InsertRemovableArea(magazine, job, tool, ts): Boolean

implements the insertion of a new tooltool with size ts
into slots containing removable tools usingmagazine (an
array of slots) to store the tools. The algorithm differenti-
ates between tools which are used by the current jobjob,
and tools which are not (and can thus be removed). The
implementation separates the magazine space into removable
and non-removable areas. Given a tool with sizets and

a removable area containing enough slots for the tool, the
algorithm searches for a sequence ofts slots with a lowest
total removal cost. This is done by checking the removal cost
by the aid of our matrixR for each possible insertion location
of the new tool.

ProcedureInsertRemovableArea uses function

FindMinimumCostPlace(
magazine, job, start, end, ts, cost): int

to find the lowest cost insertion slots in a removable area. Here
start is the start of the area where insertion is considered,
end is the last slot where insertion can occur, andcost is
the cost of making free space at the returned position.

Tool removal costs are computed with function

GetToolRemovalCost(magazine, job, pos, len): int

which calculates the removal cost of tools stored inlen
consecutive slots starting atpos. This is done by simply sum-
ming up the valuesR[job, t] wheret ranges frompos
to pos + len - 1. RoutineFindMinimumCostPlace
appliesGetToolRemovalCost for each possible starting
position, and returns the one with the minimal cost.

The implemementation of the main insertion routine is
illustrated in the pseudocode below.

InsertRemovableArea(magazine, job, tool, ts): Boolean
pos = 0 // index of the slot where insertion can occur
cost = 0 // current cost of insertion at pos
for j = 1 to C

if tool at magazine[j] is not used
next = index of the first used tool after j
i = FindMinimumCostPlace(

magazine, job, start, next - 1, ts, c)
// c is the cost of inserting the tool at position i
if i > 0 and c < cost then // suitable for insertion

set pos to i and cost to c
end end end
if pos > 0 then // there is a slot where we can insert

remove tools from magazine[pos...pos + ts - 1]
store tool at magazine[pos]

end
return (pos > 0)

Algorithm InsertRemovableArea can thus insert tools
anywhere in a removable area, even into the middle of it.
This means that the magazine can become fragmented after a
number of tools have been placed over removable tools. This
problem is somewhat handled by considering the tools in their
decreasing order of size. Nevertheless, the algorithm might fail
to insert the tool, and control is returned to a higher level in
the storage management algorithm where we reconsider the
tool insertion into a fragmented magazine space.

E. Inserting multiple tools
Let us now consider a higher level of hierarchy of the

IMTM algorithm. As stated in the outline of the storage
management algorithm, a number of new tools are inserted
into the magazine for each job. This is done by function

InsertMultiTool(magazine, job, T): Boolean

which does the insertions tool by tool. The algorithm first tries
to insert usingInsertFreeArea, and if that fails then with
InsertRemovableArea.

If both of these attempts fail for the current job (no place
for new tools),InsertMultiTool returns ’false’ and the
IMTM storage management algorithm tries to rearrange the
used tools using function

IteratedInsertMultiTool(magazine, job, T): Boolean

This routine considers the tools used by the current job, andthe
ones inherited from the previous magazine in the increasing
order of their removal costs. It removes at each step a tool
from the magazine and inserts it in the set of new toolsT
(the ones not in the magazine but needed by the current job)
which will be passed to routineInsertMultiTool again.

IteratedInsertMultiTool(magazine, job, T)
prevMagazine = magazine
if not InsertMultiTool(magazine, job, T) then

MT = set of tools from the magazine needed by job
sort MT by increasing order of removal cost from R
for j = 1 to |MT|

tool = MT[j]
remove tool from prevMagazine
add tool to T // set of new tools
magazine = prevMagazine
if InsertMultiTool(magazine, job, T) then

return
end end
//insert T as one block at the start
clear magazine
insert T into magazine

end

After moving the tool from the magazine into the set of
new tools,IteratedInsertMultiTool employs again
theInsertMultiTool procedure to insert the set ofT tools
into the magazine. This loop is iterated on until all the tools
have been inserted, or all the needed tools have been removed
from the magazine, and they are all considered as new tools.

It is easy to see that theIteratedInsertMultiTool
procedure cannot fail. If there is no possibility to insert
the new tools into the magazine, all the tools needed by
the current job will end up inT . These are either inserted
into the lowest removal cost places (as the last step of
the for loop) or the magazine is emptied and the tools are
inserted as one block. TheIMTM algorithm employs the
IteratedInsertMultiTool procedure to insert the new
tools needed for the current job into the magazine.

F. Generating the magazine set-up for each job
At the highest level of the algorithm hierarchy, the storage

management algorithm iterates over the set ofN jobs, and
builds a magazine set-up for each job using the algorithm

InsertJobTools(magazine[], T, N)

which returns as the output an array of magazine set-ups.
This is used to compute the total cost of tool switching for a
particular sequenceS of the jobs.

InsertJobTools(magazine[], T, N)
for j = 1 to N

Tj = tools needed by job j.
magazine[j] = magazine[j - 1]
IteratedInsertMultiTool(magazine[j], j, Tj)

end

G. Comparison to the SMMT-2

Altough the storage management algorithm described above
is based on the ideas introduced by Hirvikorpiet al. in
[7], there are several fundamental differences between this
algorithm and theSMMT-2 algorithm of Hirvikorpi. Both
algorithms produce results of similar quality, while the new
algorithm does that about 200 times faster in similar conditions

on the same data set. This allows us to use it as a storage
management algorithm embedded into the Djellab-Gourgand
job ordering heuristics.

The main differences between theIMTM algorithm and the
SMMT-2 algorithm presented by Hirvikorpiet al. in [7] are
the following.

The SMMT-2 algorithm tries to insert all the tools for a job
in a single block. This might succeed in some cases, but for
the upcoming jobs it might cause additional fragmentation.

The SMMT-2 algorithm considers tools to be inserted in a
random order. In theIMTM algorithm we consider tools in the
decreasing order of their size, placing first tools with larger
size.

However, the main difference lies on how tools for removal
are chosen. TheSMMT-2 chooses the lowest removal cost
tool to be removed, and then tries to place a new tool in its
place. By removing the tools with the lowest removal cost,
one does not always produce enough space for a new tool,
and then other tools have to be removed. This causes problems
especially when, for example, the two lowest cost removable
tools are not in adjacent slots, so their removal does not free
up relevant space. This means that we do not always remove
the tool with the lowest removal cost.

When theSMMT-2 algorithm runs out of possibilities of
placing the new tools, it will try to place them as a single
continuous block, relying on a less efficient algorithm. In the
IMTM algorithm we remove a tool which is in the magazine
from the previous job, and then try the same algorithm to insert
the tools required for the current job and not in the magazine.

In SMMT-2 the tool removal cost is calculated in every step,
which adds up to the complexity of the algorithm. In theIMTM
algorithm we use a precomputed matrix of tool removal costs.

V. THE COMBINED HEURISTICS

TheBest Insertion (BI) routine of the job ordering algorithm
by Djellab et al. in [9] does not utilize any knowledge of
tool sizes. It is practically a gap minimization algorithm,
which takes the job/tool incidence matrix, and searches for
a job permutation, for which the number of horizontal gaps
is minimized. These gaps represent tools which are removed
from the magazine to make room for other tools. We use the
Best Insertion routine as such in theIMTM algorithm.

The Iterative Best Insertion (IBI) algorithm [9] relies on
the KTNS algorithm to evaluate the cost of job permutations
found by theBest Insertion algorithm. In our implementation,
for ordering jobs with unequal tool sizes, we replace the
KTNS algorithm with theIMTM algorithm. We name the
new algorithms with the replaced storage managementBest
Insertion∗ and Iterative Best Insertion∗ respectively. In this
way the Iterative Best Insertion∗ algorithm will return a
job sequence which has the lowest cost according to the
IMTM algorithm, from all sequences found byBest Insertion∗.
Because theIMTM algorithm is used at each step in the
iteration of theIterative Best Insertion∗ algorithm, the speed
of the IMTM algorithm is crucial. Our evaluation showed

TABLE I

PROBLEM INSTANCES

N M Min Max C
10 10 2 4 12, 15, 20, 25
15 20 2 6 18, 25, 30, 35
30 40 5 15 45, 50, 55, 60
40 60 7 20 60, 65, 70, 75

that theIMTM algorithm is fast enough so that the Djellab-
Gourgand heuristic remains usable in what comes to the time
consumption.

Besides the replacement of the KTNS algorithm by the
IMTM algorithm, all the other aspects of the job ordering
remain as described by Djellabet al. in [9]. We name the new
job ordering algorithm using tools with unequal sizesDG+.

VI. COMPUTATIONAL RESULTS

We compared theDG+ algorithm presented in this paper to
the Aladdin algorithm introduced by Tzur and Altman in [8].
We used the original implementation of the Aladdin algorithm,
which was kindly provided to us by Dr. M. Tzur.

The Aladdin algorithm evaluation in [8] counts the number
of tool switches instead of the cost of these switches. Indeed,
in some of the manufacturing environments, the impact on the
manufacturing cost is the number of switches (steps to refill
the magazine), and not proportional to the size of the tools.
In our comparison we used this switch counting method both
for Aladdin (as it was originally) and theDG+ algorithm.

The original Aladdin evaluation in [8] used random tool
size sets for each instance. There were 10 instances for
each job/tool number configuration, and there were a total
of 4 job/tool configurations as follows: (10, 10), (15, 20),
(30, 40) and (40, 60). Each job/tool configuration was tested
with 4 different magazine capacities. We fixed the tool size
distributions in our evaluation for both the Aladdin and forthe
DG+ algorithm. Practically this means that we gave the same
set of tools as an input for both the Aladin algorithm and the
DG+ algorithm. Table I summarizes the problem instances
used in our test. The problem types are characterized by the
following parameters:

• N - The number of jobs to be processed.
• M - The number of tools used to process these jobs.
• Min - The minimum number of tools used by a job.
• Max - The maximum number of tools used by a job.
• C - The capacity of the tool magazine.
It is important to note, that the comparison does not take

account the initial tool setup. This means, that practically only
the tool removals are counted when the number switches are
evaluated.

In our test we used various tool size distributions, of 3
different tool sizes, occupying 1, 2 or 3 slots. The tool size
frequency is indicated in each table. For example (1/3, 1/3,1/3)
means that each tool size has been used in equal proportion.
The tables (II, III, IV, V) containing the test results are
organized as follows. The first column contains the type of the

TABLE II

RESULTS FOR(1/3, 1/3, 1/3)TOOL SIZE FREQUENCIES

Instance Switching cost Running time
Type C Aladdin DG+ Aladdin DG+

(10, 10, 2, 4) 12 13.100 4.300 0.150 0.030
(10, 10, 2, 4) 15 7.600 2.300 0.200 0.020
(10, 10, 2, 4) 20 0.600 0.700 0.290 0.020
(10, 10, 2, 4) 25 0.000 0.000 0.350 0.030
(15, 20, 2, 6) 18 43.100 12.300 0.721 0.110
(15, 20, 2, 6) 25 29.100 6.000 0.701 0.110
(15, 20, 2, 6) 30 12.500 3.200 0.711 0.110
(15, 20, 2, 6) 35 1.800 1.200 0.751 0.120

(30, 40, 5, 15) 45 243.200 62.600 1.892 1.832
(30, 40, 5, 15) 50 226.800 48.100 1.852 1.793
(30, 40, 5, 15) 55 201.400 35.800 1.892 1.763
(30, 40, 5, 15) 60 168.700 25.100 1.912 1.642
(40, 60, 7, 20) 60 472.100 137.900 4.736 5.999
(40, 60, 7, 20) 65 451.500 116.200 4.506 5.958
(40, 60, 7, 20) 70 437.700 99.600 4.536 6.029
(40, 60, 7, 20) 75 421.500 83.800 4.426 5.918

TABLE III

RESULTS FOR(1/5, 1/5, 3/5)TOOL SIZE FREQUENCIES

Instance Switching cost Running time
Type C Aladdin DG+ Aladdin DG+

(10, 10, 2, 4) 12 15.400 5.500 0.550 0.051
(10, 10, 2, 4) 15 9.700 3.700 0.450 0.050
(10, 10, 2, 4) 20 2.100 1.800 0.500 0.040
(10, 10, 2, 4) 25 0.000 0.000 0.490 0.030
(15, 20, 2, 6) 18 48.700 17.400 0.751 0.130
(15, 20, 2, 6) 25 37.700 10.300 0.871 0.130
(15, 20, 2, 6) 30 27.100 7.200 0.901 0.121
(15, 20, 2, 6) 35 17.900 4.200 0.851 0.130

(30, 40, 5, 15) 45 265.100 84.800 1.952 2.063
(30, 40, 5, 15) 50 249.900 71.300 1.942 2.013
(30, 40, 5, 15) 55 232.100 58.700 1.912 2.053
(30, 40, 5, 15) 60 207.900 45.900 1.952 2.003
(40, 60, 7, 20) 60 516.200 184.600 4.706 6.709
(40, 60, 7, 20) 65 491.400 163.800 4.636 6.970
(40, 60, 7, 20) 70 474.300 144.100 4.626 7.031
(40, 60, 7, 20) 75 457.600 125.400 4.606 7.020

problem instance. The second column contains the capacity of
the magazine. The third and fourth columns contain the tool
switching costs computed by Aladin andDG+ respectively.
The fifth and sixth column contain the running times for
Aladin andDG+ respectively.

Tables 2, 3, 4 and 5 present the comparison of results
between the Aladdin algorithm and theDG+ algorithm. There
are 3 different tool sizes, tools occupying 1, 2 and 3 magazine
slots. The frequency array specifies the number of tools witha
given size. The running time of the algorithms was evaluated
in milliseconds.

It is observed that DG+ outperformed Aladdin in most of
the cases. In small problem instances the results are similar (in
one case better for Aladdin). The DG+ algorithm performed
excellently in cases of large instances.

VII. C ONCLUSIONS

We introduced a new heuristic approach for the combined
job scheduling, tool loading and tool placement problem,
with unequal tool sizes. The main idea behind this algorithm

TABLE IV

RESULTS FOR(1/5, 3/5, 1/5)TOOL SIZE FREQUENCIES

Instance Switching cost Running time
Type C Aladdin DG+ Aladdin DG+

(10, 10, 2, 4) 12 10.900 4.100 0.460 0.030
(10, 10, 2, 4) 15 5.100 2.000 0.450 0.030
(10, 10, 2, 4) 20 0.000 0.000 0.460 0.040
(10, 10, 2, 4) 25 0.000 0.000 0.480 0.030
(15, 20, 2, 6) 18 44.100 14.200 0.731 0.130
(15, 20, 2, 6) 25 27.500 7.200 0.711 0.120
(15, 20, 2, 6) 30 13.200 3.700 0.741 0.111
(15, 20, 2, 6) 35 2.900 1.300 0.731 0.130

(30, 40, 5, 15) 45 247.700 62.300 1.872 1.923
(30, 40, 5, 15) 50 217.700 47.600 1.802 1.942
(30, 40, 5, 15) 55 185.900 35.900 1.822 1.833
(30, 40, 5, 15) 60 148.100 26.300 1.882 1.753
(40, 60, 7, 20) 60 485.500 140.000 4.376 6.419
(40, 60, 7, 20) 65 464.800 120.300 4.276 6.399
(40, 60, 7, 20) 70 439.300 104.100 4.236 6.389
(40, 60, 7, 20) 75 405.500 87.700 4.236 6.390

TABLE V

RESULTS FOR(3/5, 1/5, 1/5)TOOL SIZE FREQUENCIES

Instance Switching cost Running time
Type C Aladdin DG+ Aladdin DG+

(10, 10, 2, 4) 12 6.200 1.700 0.450 0.030
(10, 10, 2, 4) 15 0.600 0.600 0.450 0.020
(10, 10, 2, 4) 20 1.600 0.000 0.470 0.020
(10, 10, 2, 4) 25 0.000 0.000 0.470 0.030
(15, 20, 2, 6) 18 36.400 8.000 0.741 0.120
(15, 20, 2, 6) 25 10.700 2.800 0.721 0.110
(15, 20, 2, 6) 30 0.500 0.500 0.741 0.100
(15, 20, 2, 6) 35 0.000 0.000 0.751 0.121

(30, 40, 5, 15) 45 206.200 31.200 1.862 1.642
(30, 40, 5, 15) 50 150.400 17.800 1.832 1.542
(30, 40, 5, 15) 55 72.400 8.500 1.932 1.412
(30, 40, 5, 15) 60 11.900 2.900 2.072 1.312
(40, 60, 7, 20) 60 433.100 83.400 4.105 5.548
(40, 60, 7, 20) 65 409.700 66.100 4.055 5.258
(40, 60, 7, 20) 70 385.600 50.500 3.995 5.137
(40, 60, 7, 20) 75 313.500 36.600 4.075 4.927

is to use an efficient storage management algorithm with a
previously known job ordering algorithm [9].

The new storage management algorithm is based on the
ideas introduced in [7], but here we applied a different policy
on how tools are removed, and how the fragmented magazine
is rearranged. The combination of these algorithms has not
been addressed previously in the literature.

We compared the results of the new algorithm with the
results of the Aladdin algorithm introduced in [8]. We found
that combining high performance heuristics from both job
scheduling and tool placement problems resulted in good
quality and time performance. Our results indicate that this
algorithm makes a remarkable improvement over previously
known approaches. Further consideration of tool wearing
could be added to the problem statement ofJLP problem.

A further study could investigate the combination of other
job scheduling algorithms with theIMTM algorithm and
evaluate the result provided by the combination.

VIII. A CKNOWLEDGEMENT

We are grateful to Dr. Michal Tzur for providing us with
the implementation of the Aladdin algorithm.

REFERENCES

[1] Y. Crama and J. van de Klundert, The approximability of toolmanage-
ment problems, Technical Report, Maastricht Economic Research School
on Technology and Organizations (1996).

[2] Y. Crama and J. van de Klundert, The worst-case performanceof ap-
proximation algorithms for tool management problems. Naval Research
Logistics, 46, pp. 445-462 (1999).

[3] A. S. Tanenbaum, Modern operating systems, Prentice Hall Ic., 2nd
edition, 200-201, 2001.

[4] C.S. Tang and E.V. Denardo, Models arising from a flexiblemanufac-
turing machine, part I: Minimization of the number of tool switches,
Operations Research, Vol. 36, No. 5, pp. 767-777 (1988).

[5] M. Johnsson, Operational and tactical level optimization in printed
circuit board assembly, PhD thesis, University of Turku (1999).

[6] B. Matzliach and M. Tzur, Storage management of items in two levels
of availability, European Journal of Operational Research(2000) 121
pp. 363-379.

[7] Mika Hirvikorpi, Kari Salonen, Timo Knuutila, Olli Nevalainen, General
Two Level Storage Management Problem - A reconsideration of the
KTNS-Rule, European Journal of Operational Research (in print).

[8] M. Tzur and A. Altman, Minimization of tool switches for a flexible
manufacturing machine with slot assignment of different tool sizes, IIE
Transactions (2004) 36, pp. 95-100.

[9] H. Djellab, K. Djellab, M. Gourgand, A new heuristic based on the
hypergraph representation for the tool switching problem. International
Journal of Production Economics, (2000) 64, pp. 165-176.

[10] L.T. Kou, Polynomial complete consequtive information retrieval prob-
lems, SIAM Journal of Computing 6 (1) (1997) pp. 67-75.

[11] K. Salonen, Cs. Raduly-Baka, O. Nevalainen, A note on the tool
switching problem of a flexible machine, Special Issue of Computers and
Industrial Engineering, Selected papers from 32nd ICC&IE inLimerick,
(to appear).

