Minimising the number of tool switches with tools
of different sizes.

Csaba Raduly-Baka Timo Knuutil&* and Olli S. Nevalaineh
1) Elcoteq Design Center Oy, Joensuunkatu 13, FIN-24100, Fa#hland
2) Department of information technology and TUCS, UniversityTurku, FIN-20014 Turku, Finland
*) Corresponding authoknuut i | a@s. ut u. fi, phone:+358- 2- 33386365, fax: +358- 2- 3338600

Abstract—In this paper we address the combined problem component types (stored in component reels, sticks, efc.) a
of job-ordering and tool placement, where each tool can occupy "tools” and the feeder unit as a "magazine”.
more than one slot of the primary storage magazine. The capacity yjrigys aspects of the tool management have been discussed

of the magazine is limited so that all the tools neccessary in. . - . -
the production cannot fit into the magazine at the same time, " literature. One aspect is the ordering of the jobs so tmat t

and the cost of magazine reorganization depends linearly on the Number of required tool switches is minimized. This problem
number of tool moves. Our task is to find the order of processing is also known as th#ool switching problem. The problem is

the jobs and the positions to put the tools in the magazine, so NP-hard even in the simplified case where all the tools are
that the total cost of switching tools from one job to the next of the same size. and a number of heuristic solutions have
is minimized. We introduce a new heuristic for the problem. ! . :

The algorithm hybridizes an efficient tool switching algorithm been_ proposed in the Ilteratqre [1]. Tt[ml-l_oadl_ng problem

based on the matrix permutation problem and a novel two CONsiders a case where the job sequence is given, and the goal
level storage management algorithm. We compare the proposed is to find a placement and removal order of tools, that the tota
solution method to previous approaches from the literature. Our cost of required tool changes is minimized. This problem can
comparisons indicate that the new algorithm procudes results be solved optimally in the case of equal tool sizes using the

with costs almost a third of the costs produced by algorithms .
previosly known in this field. KTNS (Keep Tool Needed Soonest) algorithm, as showed by

Keywords: tool management; tool switching; two level storage 1ang an_d Denardo [4_]- _
management; flexible manufacturing; heuristics; combinatorial For different tool sizes, the tool-loading problem becomes

optimization NP-hard as showed by Matzliach and Tzur in [6]. This problem
is addressed in the literature also as fbgnamic Sorage
Management Problem, or DSMP. Because of different tool
The problem of increasing the production efficiency isizes, the storage area will become fragmented after Binges
flexible manufacturing systems by computational means haswumber of jobs, and the question arises how to place the
become an important aspect of manufacturing with the drrivi@ols to minimize the fragmentation. The online versiontos t
of computer numerically controlled (CNC) machinery. Whilgroblem also appears in operating systems, where the system
the kind of machinery is an excellent means of increasimgemory is shared among various tasks [3]. The offline version
the degree of automatization in the production, it stilivleess has been discussed in the context of flexible manufacturing
numerous questions open with respect to its optimal usaggstems [7].
Some of these deal with the tool management which hasThe DSMP has been addressed in literature as the two
clear effect on the operating cost and the productivity ef thevel storage management problem in [6] and [7]. In this
manufacturing process. problem there are two magazines holding tools, one with
In particular, we consider the case where a CNC machiaelimited capacity internal to the machine, the other with
processes a number of jobs with a number of changeable toals. unlimited capacity external to the machine. The primary
It is imposed that each job requires some subset of toold¢dor (internal) magazine can hold only a limited number of tools,
processing and that the machine hgzianary tool magazine and if a required tool is not in the primary storage area the
with a lower capacity than the number of all different toolsnachine must pick it up from the secondary (external) strag
[2]. When proceeding to the next job, the tools used by tleea. This may also involve the removal of some tools from
next job must placed in the magazine, if not already therdhe primary storage area, see Matzliach and Tzur in [6] and
Because not all the tools fit into the tool magazine some Hiirvikorpi et al. in [7].
the tools in the magazine may have to be removed to makeThe combined problem of job-ordering, tool placing and
room for the tools of the new job. tool-loading problems has been studied previously only for
Flexible manufacturing systems are used in various indusqual tool sizes [9]. The problem is easy in the sense that
tries to achieve efficiency in low volume high-mix producthe tool-loading and placing can be solved optimally foirit.
manufacturing. One example is, in the electronics indu#itey real life manufacturing systems it is likely that the toates
assembly of printed circuit boards (PCB). Each PCB containare unequal, see [8] for a number of heuristics for solvirgy th
number of components, and different PCB types are assembpedblem.
by the system [5]. One can, in this context, interpret the In this paper we consider a new approach to the job-

I. INTRODUCTION

ordering, tool loading and placement problem with unequal We propose an algorithm, in which a job-ordering algo-
tool sizes. Our approach to the problem is similar to thaithm is used to sequence the jobs and a two level storage
described by Tzur and Altman in [8], except that we considemaanagement algorithm is used to minimize the tool switching
different combination of job ordering and storage manageémecost of each job sequence. Tzur and Altman experimented in
algorithms. Our storage management algorithm is based [8h with various two-stage heuristics, where the job ondgri
the heuristic by Hirvikorpiet al. in [7], with small variations and tool switching stages were separated. Their testsatetic
required by the nature of this problem. For the job-orderintpat two-stage approaches gave weaker results than a unified
we modify the heuristic introduced by Djelladt al. in [9]. one-stage solution, namely thdaddin algorithm. We will
This heuristic has been used very successfully to optimigee that, by choosing the heuristics carefully, one canterea
instances of job-ordering problem with equal tool sizeg).[11an efficient two-stage approach. We also note that the choice
The original Djellab heuristic is based on the KTNS toolef storage management heuristic is crucial: most of the job-
loading heuristic which we replace with our own tool-loaglin ordering heuristics presented in [8] can be improved sinbgly
and placement heuristic. a different choice of the tool storage management algorithm
The rest of this paper is organized as follows. In Section
2 we formally specify the problem and its assumptions.
In section 3 the Djellab tool switching heuristic is briefly
described, a detailed description can be found in [9]. Oer us The novel heuristic algorithm proposed by Djellab and
of the Djellab method is neutral in the sense that it does rig@urgand in [9] uses a hypergraph representation of the tool
take any position on the (equal or unequal) sizes of the tooRvitching problem. The algorithm solves a weighted versibn
In Section 4, a modified version of the storage managemdh@ matrix permutation problem [11]. As presented by Dfella
heuristic of Hirvikorpiet al. [7] is described. In Section 5 we €t a. in [9], the algorithm gives excellent results for the tool
give the combined heuristics for the tool switching probleffwitching problem when the tool sizes are equal.
with different tool sizes. Section 6 summarizes the resofits A major strength of the heuristic by Djella al. [9] is that
numerical tests with the new algorithm, here we observe tHkiS able to consider also an initial partial order of thegob
the new algorithm outperforms existing solution by a factbr The fact that certain jobs can be processed only after other
3, for large problem instances. Section 7 contains conetudiiobs is commonly ignored in the tool switching literature.

IIl. THE DJELLAB-GOURGAND TOOL SWITCHING
HEURISTIC FOR EQUAL TOOL SIZES

remarks on the subject. The Djellab-Gourgand heuristic consists of two major parts
« Given a priority order in which the jobs are considered
[I. PROBLEM DESCRIPTION for insertion, create a job sequence so that the number of

tool switches using the KTNS policy is minimized. This
procedure is called thBest Insertion (Bl) heuristic.

« In the second part, iteratively try to improve the results

) by generating random priority orders and using the BI

« N - the number of jobs to be processed. heuristic with these priority orders. This procedure is

« M - the number of different tools available. called thelterative Best Insertion (1BI) heuristic.

- C —Ctihe carl]pacn.y of the tool magazine (number of slots) In our implementation we modified the Djellab-Gourgand
;J_s_ese?zft t:oErITviZ:tggigioagzaf has a transfer cost heuristic to allow different tool sizes. This is necessaung tb

° ¢ € R+ which 'is the cost to move. remove or insert ththe ff_;lct that the KTNS policy vyhich_ is used in the o_riginal
téol into the magazine, and a sizé c N which is the %Igorlthm assgmes equal tool sizes in o_rder to b(_a qptlmal.
number of slots occupi'ed by the tool The reader is refered to [9] fc_)r a detallled description of the

- & iob-tool incidence matrix. Th iz FAR % M original Djellab-Gourgand heuristic. Basically we applgré

» A-ajob-tool incidence natrix. 1he size o > X the same algorithm with the difference that we do not use

and the element;; of A'is 1 if the ith job requires the o g policy for tool placement, but théTM storage

jth tool, ando otherwise. management algorithm proposed in section 4.
The goal is to find an ordering of the jobs (job scheduling)

and the placement and loading order of the tools, so that the |V. THE STORAGE MANAGEMENT HEURISTIC
total cost of switching the tools between jobs is minimized. The problem of storage management with different tool
This problem statement omits the lifetime limitations oé thsizes and fixed job ordering has been proved to be NP-hard by
tools. We assume that the tools do not wear and therefore daatzliach and Tzur in [6]. A number of algorithms have been
reside in the magazine as long as they are needed. proposed to solve this problem. In the case of moveable tool
The JLP problem is NP-hard as shown by Matzliach angositions Matzliach and Tzur in [6] proposed an algorithm.
Tzur in [6], even in the case where the order of the jobs hae problem becomes even more complicated in the case when
been fixed. The best known heuristic for this problem is thle tools cannot be moved unless involving the tool switghin
Aladdin heuristic proposed by Tzur and Altman in [8]. Thecost to each move. This problem has been recently addressed
Aladdin algorithm combines the job-ordering and the toolby Hirvikorpi et al. in [7] and they give heuristics to solve the
loading problems into a single heuristic. problem.

The problem ofJob ordering, tool Loading and tool Place-
ment with unequal tool sizesJ(P for further abbreviation)
has the following parameters:

We suppose in the storage management problem (widtstance 0). The storage management algorithm usedithe
different tool sizes and magazine reorganization costa) thmatrix when searching for the block of consequtive magazine
there areN jobs to be processed in a predefined order, astbts with the lowest removal cost, to make room for new tools
the jobs use in total/ different tools. The task is to determineNaturally R is only one (heuristic) measure for favourable
a tool switching and placement strategy, which minimizesctions to be taken when solving the storage management
the total cost of tool changes. Toolconsumess; slots of problem.
the magazine, and the cost of removing the toohto the . .
magazige ig;. The N x M binary matrixAgteIIs whether the B. Outline of the IMTM algorithm
tool ¢ is used @A(j,t) = 1) or not (A(j,t) = 0) in a job j. The IMTM algorithm builds a content of the tool magazine
The capacity of the tool magazine @ slots. for each job by considering the magazine from the previous

In the present paper we implement a heuristic based i, and inserting the tools needed by the job but not already
the SUMT-2 heuristic introduced by Hirvikorpét al. in [7]. in the magazine.

We name this algorithmiterative Multi-Tool Manager or The tools are always inserted one by one, into the smallest
IMTM algorithm. In our implementation we have improved fogvailable space they can fit. If the magazine does not contain
efficiency reasons the meth@IMT-2 uses for choosing tools €nough empty space, the algorithm removes from the maga-
for removal. This was necessary because storage managera#et some tools, which are not needed by the current job, to
decisions are made repeatedly in t& procedure (of the make room for the new tool. The choice of the tools to be

Djellab-Gourgand heuristic) a great number of times ang théemoved is made according to the lowest removal cost value
thus become a bottleneck of the joint solution algorithmhef t defined byR.

JLP problem. As to the results produced by the new heuristic If no room can be made by removing unused tools, the

and that of [7], according to our evaluations the solutiores a@lgorithm removes from the magazine a tool which is required

of similar quality, but the new heuristic runs about 190 smedy the current job, and restarts, trying to insert the new

faster. tools (including the removed one) needed by the current job.
This last step will cause a rearrangement of the tools in the
A. Removal cost matrix magazine.

When cleaning the magazine for new tools, the decisionsThe algorithm tries to build a magazine with limited ca-
on which tools to remove are central to thdTM algorithm. pacity for the current job using the tool magazine setting
In order to save computation time, we precompute a mat@® the previous job. The algorithm iterates through all jobs
R of size N x M, containing the removal cost for each toond applies a magazine building procedure for each job. The
of each job. Whenever the algorithm has to decide which to#lagazine is considered to be empty before the first job.
to remove at a certain job, it uses the removal cost matrix &) Inserting in a free area

choose the tool. .) :
The elements of? are calculated in a way that resembles The storage management algorithm first looks for available

how the KTNS rule is used to choose the tools to be removéNPLY spaces in the magazine for the new tool. This is done

but now the removal costs are taken into consideration. F¥ theInsertFreeArea procedure. Given the size of the tool to
each jobj and toolt let dist(j, t) be the distance to the nextPe inserted, theénsertFreeArea searches the magazine to the

job using the tool. If jobj uses this tool, the distance is o,shortest sequence of free slot_s, where the sequence contain
otherwise it is the number of jobs until the tool is used agaifit |€ast as many slots as required by the tool size.

Formally, If such an area is not found, the storage management
proceeds with the next step by trying to insert the new tool
0 ifA(jt)=1 over some removable tools.
o) m iFAG+mt)=1andA(j+i,t) =0 o
dist(j,t) = for all i € [0,m), andm > 0 D. Inserting in a removable area
N if A(j+i,t)=0forallie[0,N—j) In order to insert a new tool over some removable tools,

If the tool is not used in any of the forthcoming jobs, théhe algorithm must choose which tool can be removed. This

distance is the number of job¥, so that no other (used) toolch0|ce is made according to the removal cost values stored in

can have this large distance. The tool removal coBRjsdre th?:ﬁn'g%%ﬂx'

then given by the following formula which weights the too| :

. X . nsert Renovabl eAr ea(magazi ne
removal costs by their distance to the next use. In this way _ . _ _
we reuse the principle of the KTNS algorithm for tools ofmplements the insertion of a new tobbol with sizets
different sizes. into slots containing removable tools usinggazi ne (an

_ e /dist(G,t) if dist(j,£) > 0 array of slots) to store the tools. The algorithm d_|1_°ferent|
R(j,t) = o e if dist(j.t) =0 ates between tools which are used by the currentjjob,
t 38 = and tools which are not (and can thus be removed). The
Here « is an arbitrary constant greater than 2, to give thenplementation separates the magazine space into rengovabl
highest removal cost for tools used by the current job (witnd non-removable areas. Given a tool with stz and

job, tool, ts): Bool ean

a removable area containing enough slots for the tool, theratedinsert Ml tiTool (magazine, job, T): Bool ean

algorithm searches fo_r a sequencet &f sI(_)ts with a lowest Tpis routine considers the tools used by the current jobtlaad
total removal cost. This is done by checking the removal cos

. . L : . _0nes inherited from the previous magazine in the increasing
by the aid of our matrixR for each possible insertion location :
of the new tool. order of their removal costs. It removes at each step a tool

Procedurd nsert Renrovabl eAr ea uses function from the magazine and inserts it in the set of new tdbls
Fi ndM ni munCost Pl ace((thg ones not in the magazine but needed by thg current job)
magazine, job, start, end, ts, cost): int which will be passed to routinensertMultiTool again.

to find the lowest cost insertion slots in a removable areaeHe, & s =0 oer LVt Too (magazine. ob. 1)

start is the start of the area where insertion is considered, not InsertMltiTool (magazine, job, T) then

. . : : MI = set of tools fromthe nagazi ne needed by job
end is the last slot where insertion can occur, amast is sort MT by increasing order of removal cost from R

the cost of making free space at the returned position. for j =1 to |M
Tool removal costs are computed with function tool = MIj]
renove tool from prevMagazine
Get Tool Renoval Cost (magazi ne, job, pos, len): int add tool to T // set of newtools
magazi ne = pr_evMagazi ne)
which calculates the removal cost of tools storedlien if 'ﬂtsertNUHITool(rragaZI ne, job, T) then
. return
consecutive slots starting pbs. This is done by simply sum- ¢ng end
ming up the valuesy j ob, t] wheret ranges frompos /[linsert T as one block at the start
. . . cl ear nmgazi ne
topos + len - 1. RoutineFi ndM ni nunCost Pl ace insert T into magazine
applies Get Tool Renpval Cost for each possible starting end
position, and returns the one with the minimal cost. i ina i
_ The implemementation of the main insertion routine is After moving the tool from the magazine into the set of
illustrated in the pseudocode below. new tools, |t er qt edl nsert Mul ti Tool employs again
_ _ , thel nsert Mul ti Tool procedure to insert the set®ftools
I nsert Renovabl eAr ea(magazi ne, job, tool, ts): Bool ean . . . L. -
pos = 0 // index of the slot where insertion can occur into the magazine. This loop is iterated on until all the $ool
fcgftj =0 /1 edrrent cost of Insertion at pos have been inserted, or all the needed tools have been removed
if tool at magazine[j] is not used _ from the magazine, and they are all considered as new tools.
M o bt Pl aeg(Cd oot arter] It is easy to see that thet er at edl nsert Mul ti Tool
_ mmgazine, job, start, next - 1, ts, ¢) procedure cannot fail. If there is no possibility to insert
[1-c is the cost of inserting the tool at position i the new tools into the magazine, all the tools needed by
if i >0 and ¢ < cost then // suitable for insertion ! . 4 . A
set pos to i and cost to c the current job will end up irl". These are either inserted
end end end :
' pos > 0 then // there is a slot where we can insert into the lowest removal c_ost _places _(as the last step of
remove tool's from magazine[pos...pos + ts - 1] the for loop) or the magazine is emptied and the tools are
gt Ore tool at mmgazinel pos] inserted as one block. ThBMTM algorithm employs the
return (pos > 0) Iteratedl nsert Ml ti Tool procedure to insert the new

. . tools needed for the current job into the magazine.
Algorithm | nser t Renpovabl eAr ea can thus insert tools J 9

anywhere in a removable area, even into the middle of E. Generating the magazine set-up for each job
This means that the magazine can become fragmented after At the highest level of the algorithm hierarchy, the storage
number of tools have been placed over removable tools. Tg{@nagement algorithm iterates over the setNojobs, and

. L : uilds a magazine set-up for each job using the algorithm
problem is somewhat handled by considering the tools i thel

decreasing order of size. Nevertheless, the algorithm figgh ! nsert JobTool s(magazine[], T. N)

to insert the t00|, and control is returned to a h|gher level Wh|ch returns as the Output an array of magazine Set_ups_
the storage management algorithm where we reconsider #1§s is used to compute the total cost of tool switching for a

tool insertion into a fragmented magazine space. particular sequenc$ of the jobs.
E. Inserting mu|tip|e tools I nsertJobTool s(magazine[], T, N
. . . for j =1to N

Let us now consider a higher level of hierarchy of the Tj = tools needed by job j.
IMTM algorithm. As stated in the outline of the storage megazine[j] = magazine[j - 1]
management algorithm, a number of new tools are insertedteratedinsertMil tiTool (magazine[j], j. Tj)
into the magazine for each job. This is done by function end
Insert Ml ti Tool (magazi ne, job, T): Bool ean G. Comparison to the SMMT-2

which does the insertions tool by tool. The algorithm firsgr ~ Altough the storage management algorithm described above
to insert using nsert Fr eeAr ea, and if that fails then with is based on the ideas introduced by Hirvikorgi al. in
I nsert Renovabl eAr ea. [7], there are several fundamental differences between thi

If both of these attempts fail for the current job (no placgigorithm and theSMMT-2 algorithm of Hirvikorpi. Both
for new tools),I nsert Mul ti Tool returns 'false’ and the

IMTM storage management algorithm tries to rearrange tAtgorithms produce results of similar quality, while thexne
used tools using function algorithm does that about 200 times faster in similar coora

TABLE |

on the same data set. This allows us to use it as a storage
PROBLEM INSTANCES

management algorithm embedded into the Djellab-Gourgand
job ordering heuristics.

The main differences between thdTM algorithm and the 1’}', % M"; Maﬁ 12, 15, 20, 35
SMMT-2 algorithm presented by Hirvikorpét al. in [7] are 15 | 20 2 6 | 18, 25, 30, 35
the following. 30 | 40 5| 15| 45,50, 55, 60

40 | 60 7| 20] 60,65, 70,75

The SMIMT-2 algorithm tries to insert all the tools for a job
in a single block. This might succeed in some cases, but for
the upcoming jobs it might cause additional fragmentation. _ _ _
The SMMT-2 algorithm considers tools to be inserted in &hat theIMTM algorithm is fast enough so that the Djellab-
random order. In théMTM algorithm we consider tools in the Gourgand heuristic remains usable in what comes to the time
decreasing order of their size, placing first tools with éarg consumption.
size. Besides the replacement of the KTNS algorithm by the
However, the main difference lies on how tools for removaMTM algorithm, all the other aspects of the job ordering
are chosen. Th&MMT-2 chooses the lowest removal cosf€Main as described by Djellabal. in [9]. We name the new
tool to be removed, and then tries to place a new tool in 2P ordering algorithm using tools with unequal siZe&+.

place. By removing the tools with the lowest removal cost, VI]. COMPUTATIONAL RESULTS

one does not always produce enough space for a new tool, . o
) +

and then other tools have to be removed. This causes probI(?H]I\éve compared th&G+ algorithm presented in this paper to

especially when, for example, the two lowest cost removatwe Aladdin algorithm introduced by Tzur and Altman in [8].

) . . e used the original implementation of the Aladdin algarith
tools are not in adjacent slots, so their removal does net fre, . . .
which was kindly provided to us by Dr. M. Tzur.

up relevant space. This means that we do not always reMOV&he Aladdin algorithm evaluation in [8] counts the number

the tool with the lowest removal cost. of tool switches instead of the cost of these switches. lddee

When the SMMT-2 algorlt_hm runs out of poss,|b|I|t|es. of in some of the manufacturing environments, the impact on the
placing the new tools, it will try to place them as a singl

nin block. relving on a | Hicient alaorithm. he t ?nanufacturing cost is the number of switches (steps to refill
continuous LIoCk, relying on a less €tlicient aigo R L ihe magazine), and not proportional to the size of the tools.
IMTM algorithm we remove a tool which is in the magazin

. . . fh our comparison we used this switch counting method both
from the prevu_)uslob, and then try the same a!gonthm torins%r Aladdinp(as it was originally) and thBG+ alg?orithm.
the tools required for the current job and not in the magazine The original Aladdin evaluation in [8] used random tool

I,n SMMT-2 the tool removal'cost is calcule}ted in every SteRjze sets for each instance. There were 10 instances for
which adds up to the complexity of the algorithm. In t(TM o5 -, job/tool number configuration, and there were a total

algorithm we use a precomputed matrix of tool removal Costs 4 job/tool configurations as follows: (10, 10), (15, 20),

(30, 40) and (40, 60). Each job/tool configuration was tested

with 4 different magazine capacities. We fixed the tool size
TheBest Insertion (Bl) routine of the job ordering algorithm distributions in our evaluation for both the Aladdin and foe

by Djellab et al. in [9] does not utilize any knowledge of DG+ algorithm. Practically this means that we gave the same

tool sizes. It is practically a gap minimization algorithmSet of tools as an input for both the Aladin algorithm and the

which takes the job/tool incidence matrix, and searches f8c* algorithm. Table | summarizes the problem instances

a job permutation, for which the number of horizontal gaﬁésed !n our test. The problem types are characterized by the

is minimized. These gaps represent tools which are remoJ@§owing parameters:

from the magazine to make room for other tools. We use thee N - The number of jobs to be processed.

Best Insertion routine as such in theMTM algorithm. « M - The number of tools used to process these jobs.
The Iterative Best Insertion (1BI) algorithm [9] relies on ¢ Min - The minimum number of tools used by a job.

the KTNS algorithm to evaluate the cost of job permutations « Max - The maximum number of tools used by a job.

found by theBest Insertion algorithm. In our implementation, « C - The capacity of the tool magazine.

for ordering jobs with unequal tool sizes, we replace the It is important to note, that the comparison does not take

KTNS algorithm with theIMTM algorithm. We name the account the initial tool setup. This means, that practycatily

new algorithms with the replaced storage managenBest the tool removals are counted when the number switches are

Insertion* and Iterative Best Insertion* respectively. In this evaluated.

way the lterative Best Insertion* algorithm will return a In our test we used various tool size distributions, of 3

job sequence which has the lowest cost according to tt#ferent tool sizes, occupying 1, 2 or 3 slots. The tool size

IMTM algorithm, from all sequences found Begst Insertion*. frequency is indicated in each table. For example (1/3,13,

Because thd MTM algorithm is used at each step in theneans that each tool size has been used in equal proportion.

iteration of thelterative Best Insertion* algorithm, the speed The tables (I, lll, IV, V) containing the test results are

of the IMTM algorithm is crucial. Our evaluation showedorganized as follows. The first column contains the type ef th

V. THE COMBINED HEURISTICS

TABLE I TABLE IV

RESULTS FOR(1/3, 1/3, 1/3)TOOL SIZE FREQUENCIES RESULTS FOR(1/5, 3/5, 1/5)TOOL SIZE FREQUENCIES
Instance Switching cost Running time Instance Switching cost Running time
Type | C | Aladdin DG+ | Aladdin | DG+ Type | C | Aladdin DG+ | Aladdin | DG+
(10, 10, 2, 4)| 12 13.100 4.300 0.150 | 0.030 (10, 10, 2, 4)| 12 10.900 4.100 0.460 | 0.030
(10, 10, 2, 4)| 15 7.600 2.300 0.200 | 0.020 (10, 10, 2, 4)| 15 5.100 2.000 0.450 | 0.030
(10, 10, 2, 4)| 20 0.600 0.700 0.290 | 0.020 (10, 10, 2, 4)| 20 0.000 0.000 0.460 | 0.040
(10, 10, 2, 4)| 25 0.000 0.000 0.350 | 0.030 (10, 10, 2, 4)| 25 0.000 0.000 0.480 | 0.030
(15, 20,2,6)| 18 | 43.100| 12.300 0.721] 0.110 (15,20, 2,6)] 18 | 44.100| 14.200 0.731] 0.130
(15, 20, 2,6)| 25 | 29.100 6.000 0.701 | 0.110 (15, 20, 2, 6)| 25 27.500 7.200 0.711 | 0.120
(15, 20, 2, 6) | 30 12.500 3.200 0.711 | 0.110 (15, 20, 2, 6)| 30 13.200 3.700 0.741 | 0.111
(15, 20, 2, 6) | 35 1.800 1.200 0.751 | 0.120 (15, 20, 2, 6)| 35 2.900 1.300 0.731| 0.130
(30, 40, 5, 15)| 45 | 243.200| 62.600 1.892 | 1.832 (30, 40, 5, 15)| 45 | 247.700| 62.300 1.872 | 1.923
(30, 40, 5, 15)| 50 | 226.800| 48.100 1.852 | 1.793 (30, 40, 5, 15)| 50 | 217.700| 47.600 1.802 | 1.942
(30, 40, 5, 15)| 55 | 201.400| 35.800 1.892 | 1.763 (30, 40, 5, 15)| 55 | 185.900| 35.900 1.822 | 1.833
(30, 40, 5, 15)| 60 | 168.700| 25.100 1.912 | 1.642 (30, 40, 5, 15)| 60 | 148.100| 26.300 1.882 | 1.753
(40, 60, 7, 20)| 60 | 472.100| 137.900 4.736 | 5.999 (40, 60, 7, 20)| 60 | 485.500| 140.000 4.376 | 6.419
(40, 60, 7, 20)| 65 | 451.500| 116.200 4.506 | 5.958 (40, 60, 7, 20)| 65 | 464.800| 120.300 4.276 | 6.399
(40, 60, 7, 20)| 70 | 437.700| 99.600 4536 | 6.029 (40, 60, 7, 20)| 70 | 439.300| 104.100 4.236 | 6.389
(40, 60, 7, 20)| 75 | 421.500| 83.800 4.426 | 5.918 (40, 60, 7, 20)| 75 | 405.500| 87.700 4.236 | 6.390
TABLE Il
RESULTS FOR(1/5, 1/5, 3/5)TOOL SIZE FREQUENCIES TABLE V
RESULTS FOR(3/5, 1/5, 1/5)TOOL SIZE FREQUENCIES
Instance Switching cost Running time
Type | C | Aladdin DG+ | Aladdin | DG+ Instance Switching cost Running time
(10,10, 2, 4)| 12 15.400 5.500 0.550 | 0.051 Type | C | Aladdin DG+ | Aladdin | DG+
(10, 10, 2, 4)| 15 9.700 3.700 0.450 | 0.050 (10, 10, 2, 4)| 12 6.200 | 1.700 0.450 | 0.030
(10, 10, 2, 4)| 20 2.100 1.800 0.500 | 0.040 (10, 10, 2, 4)| 15 0.600 | 0.600 0.450 | 0.020
(10, 10, 2, 4)| 25 0.000 0.000 0.490 | 0.030 (10, 10, 2, 4)| 20 1.600 | 0.000 0.470 | 0.020
(15,20, 2,6)| 18 | 48.700| 17.400 0.751 | 0.130 (10, 10, 2, 4)| 25 0.000 | 0.000 0.470 | 0.030
(15,20, 2,6)| 25 | 37.700| 10.300 0.871 | 0.130 (15, 20, 2, 6)| 18 36.400 | 8.000 0.741 | 0.120
(15, 20, 2,6)| 30 | 27.100 7.200 0.901 | 0.121 (15, 20, 2, 6)| 25 10.700 | 2.800 0.721| 0.110
(15, 20, 2, 6) | 35 17.900 4.200 0.851 | 0.130 (15, 20, 2, 6)| 30 0.500 | 0.500 0.741 | 0.100
(30, 40, 5, 15)| 45 | 265.100| 84.800 1.952 | 2.063 (15, 20, 2, 6)| 35 0.000 | 0.000 0.751 | 0.121
(30, 40, 5, 15)| 50 | 249.900| 71.300 1.942 | 2.013 (30, 40, 5, 15)[45 [206.200| 31.200 1.862 | 1.642
(30, 40, 5, 15)| 55 | 232.100| 58.700 1.912 | 2.053 (30, 40, 5, 15)| 50 | 150.400| 17.800 1.832 | 1.542
(30, 40, 5, 15)| 60 | 207.900 | 45.900 1.952 | 2.003 (30, 40, 5, 15)| 55 72.400 | 8.500 1932 | 1412
(40, 60, 7, 20)| 60 | 516.200 | 184.600 4.706 | 6.709 (30, 40, 5, 15)| 60 11.900 | 2.900 2.072 | 1.312
(40, 60, 7, 20)| 65 | 491.400| 163.800 4.636 | 6.970 (40, 60, 7, 20)| 60 | 433.100| 83.400 4.105 | 5.548
(40, 60, 7, 20)| 70 | 474.300| 144.100 4.626 | 7.031 (40, 60, 7, 20)| 65 | 409.700| 66.100 4.055 | 5.258
(40, 60, 7, 20)| 75 | 457.600| 125.400 4.606 | 7.020 (40, 60, 7, 20)| 70 | 385.600| 50.500 3.995 | 5.137
(40, 60, 7, 20)| 75 | 313.500| 36.600 4.075 | 4.927

problem instance. The second column contains the capdcity o
the magazine. The third and fourth columns contain the tool - . .
L . . IS to use an efficient storage management algorithm with a
switching costs computed by Aladin amiG+ respectively.
The fifth and sixth column contain the running times foprewously known job ordering algorithm [9].
Aladin andDG+ respectively. The new storage management algorithm is based on the
Tables 2, 3, 4 and 5 present the comparison of resulégas introduced in [7], but here we applied a differentgoli
between the Aladdin algorithm and tB&+ algorithm. There ©On how tools are removed, and how the fragmented magazine
are 3 different tool sizes, tools occupying 1, 2 and 3 magazit$ rearranged. The combination of these algorithms has not
slots. The frequency array specifies the number of tools avittPeen addressed previously in the literature.
given size. The running time of the algorithms was evaluatedwe compared the results of the new algorithm with the
in milliseconds. results of the Aladdin algorithm introduced in [8]. We found
It is observed that DG+ outperformed Aladdin in most ofhat combining high performance heuristics from both job
the cases. In small problem instances the results are sifinila scheduling and tool placement problems resulted in good
one case better for Aladdin). The DG+ algorithm performeguality and time performance. Our results indicate thas thi

excellently in cases of large instances. algorithm makes a remarkable improvement over previously
known approaches. Further consideration of tool wearing
VII. CONCLUSIONS could be added to the problem statementid® problem.

We introduced a new heuristic approach for the combinedA further study could investigate the combination of other
job scheduling, tool loading and tool placement problenpb scheduling algorithms with théMTM algorithm and
with unequal tool sizes. The main idea behind this algorithevaluate the result provided by the combination.

VIIl. A CKNOWLEDGEMENT

We are grateful to Dr. Michal Tzur for providing us with
the implementation of the Aladdin algorithm.

REFERENCES

[1] Y. Crama and J. van de Klundert, The approximability of townage-
ment problems, Technical Report, Maastricht Economic Releé&ahool
on Technology and Organizations (1996).

[2] Y. Crama and J. van de Klundert, The worst-case performanfeg-
proximation algorithms for tool management problems. Naval &ebe
Logistics, 46, pp. 445-462 (1999).

[3] A. S. Tanenbaum, Modern operating systems, Prentice Hall2nd
edition, 200-201, 2001.

[4] C.S. Tang and E.V. Denardo, Models arising from a flexianufac-
turing machine, part I: Minimization of the number of tool sviés,
Operations Research, \Vol. 36, No. 5, pp. 767-777 (1988).

[5] M. Johnsson, Operational and tactical level optimizatio printed
circuit board assembly, PhD thesis, University of Turku @099

[6] B. Matzliach and M. Tzur, Storage management of items in texels
of availability, European Journal of Operational Reseg2b00) 121
pp. 363-379.

[7] Mika Hirvikorpi, Kari Salonen, Timo Knuutila, Olli Nevalinen, General
Two Level Storage Management Problem - A reconsiderationhef t
KTNS-Rule, European Journal of Operational Research (imt)pr

[8] M. Tzur and A. Altman, Minimization of tool switches for a fible
manufacturing machine with slot assignment of different taots 11E
Transactions (2004) 36, pp. 95-100.

[9] H. Djellab, K. Djellab, M. Gourgand, A new heuristic basen the
hypergraph representation for the tool switching problemerhational
Journal of Production Economics, (2000) 64, pp. 165-176.

[10] L.T. Kou, Polynomial complete consequtive informatiortrieval prob-
lems, SIAM Journal of Computing 6 (1) (1997) pp. 67-75.

[11] K. Salonen, Cs. Raduly-Baka, O. Nevalainen, A note oe thol
switching problem of a flexible machine, Special Issue of CaensLand
Industrial Engineering, Selected papers from 32nd ICC&IEimerick,
(to appear).

