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 Abstract - In this paper, a Robust adaptive neural 
network controller (RANNC) based on variable structure 
system for robotic manipulators is proposed to alleviate the 
problems met in practical implementation using classical 
variable structure controllers. The chattering phenomenon is 
eliminated by substituting single-input single-output radial-
basis-function neural networks (RBFNN's), which are 
nonlinear and continuous, in lieu of the discontinuous part of 
the control signals present in classical forms. The weights of 
the hidden layer of the RBFNN's are updated in an online 
manner to compensate the system uncertainties. The key 
feature of this scheme is that prior knowledge of the system 
uncertainties is not required to guarantee the stability. 
Moreover, a theoretical proof of the stability and convergence 
of the proposed scheme using Lyapunov method is presented. 
To demonstrate the effectiveness of the proposed approach, a 
practical situation in robot control is simulated. 
 
 Index Terms – Variable Structure Control, Adaptive 
Control, Lyapunov Stability, RBF Neural Network, Robotic 
Manipulator. 
 

I.  INTRODUCTION 

Robotic manipulators are highly nonlinear, highly 
time-varying and highly coupled. Moreover, there always 
exists uncertainty in the system model such as external 
disturbances, parameter uncertainty, sensor errors and so 
on, which cause unstable performance in the robotic 
system. Almost all kinds of robust control schemes, 
including the classical variable structure control [2], have 
been proposed in the field of robotic control during the past 
decades. Classical variable structure controller design 
provides a systematic approach to the problem of 
maintaining stability in the face of modeling imprecision 
and uncertainty. This control scheme utilizes a high speed 
switching control law to drive the nonlinear predefined 
state trajectory onto a specified surface (called the sliding 
or switching surface), to attain the conventional goals of 
control such as stabilization and tracking. 

Although classical variable structure control (VSC) is 
a powerful scheme for nonlinear systems with uncertainty, 
such as robotic manipulators [1], this control scheme has 
important drawbacks limiting its practical applicability, 
such as chattering and large control authority. Moreover, 
equivalent control computation requires exact knowledge 
of the system dynamics and parameters and, obviously, an 
approximate value can be achieved in partly known or 
uncertain systems. In addition, in order to guarantee the 
stability of the variable structure control systems, the 

boundary of the uncertainty has to be estimated. However, 
the estimate of the boundary is difficult to know, thus a 
conservative control law is selected. But this large 
conservative control signal causes more chattering and 
therefore it deteriorates the system performance. 

Recently, a lot of research work has been done to use 
soft-computing methodologies such as artificial neural 
networks in order to improve the performance and alleviate 
the problem met in practical implementation of VSC's [3]. 
The use of an NN for the calculation of the equivalent term 
of an VSC is proposed in [4]. In [5], two NN's in parallel 
are used to realize the equivalent control and corrective 
control term of the VSC. This scheme is based on the fact 
that if the NN learns the equivalent control, the corrective 
term goes to zero and any different between them is 
reflected as a nonzero corrective term. In [6], by adaptively 
estimating the bound of system uncertainty using a multi-
input single-output RBF neural network, the requirement 
for having prior knowledge of uncertainty is eliminated. 
However, there is still chattering in the control input. In 
[7], the gains of VSC are accepted as the weights of the 
NN and the weights are updated to minimize the defined 
cost function. The proposed adaptation scheme is MIT rule 
and there is no guarantee for convergence and stability. 

In this paper, to control the robotic manipulator with 
robust characteristics, a new control scheme is developed, 
in such a way that the discontinuous part of the control 
signals in the classical variable structure controllers are 
substituted by single-input single-output RBF neural 
network functions to eliminate the chattering phenomenon. 
To relax the requirements for the knowledge of upper 
bound of the uncertainties, the weights of the hidden layer 
of RBF neural networks are updated in an online manner to 
compensate the system uncertainties and to guarantee the 
stability of the overall system without having any prior 
knowledge of the system uncertainties. The adaptive law is 
designed based on the Lyapunov method and mathematical 
proof for the stability and convergence of the overall 
system is provided. 

The outline of this paper is as follows. Preliminaries 
about the model of the robotic manipulator, as partly 
known system, and the classical variable structure 
controller for robotic manipulators are summarized in 
section II. The robust adaptive neural network controller 
for robotic manipulators is presented in section III. The 
simulation results are given in section IV to demonstrate 
the effectiveness of the proposed control scheme. Finally, 
section V presents some concluding remarks. 



II.  PRELIMINARIES 

A. Model of Robotic Manipulators 
 In the absence of friction or other disturbances, the 
dynamic equation of an n-link rigid robotic manipulator 
system is described by the following second order 
nonlinear vector differential equation 
 

uG(q)q)qB(q,qM(q) =++ &&&&                       (1) 

where T
nqq ],...,[ 1=q  is an 1×n  vector of joint angular 

position, T
nqq ],...,[ 1 &&& =q and T

nqq ],...,[ 1 &&&&&& =q  are 1×n  
vectors of corresponding velocity and acceleration, u  is an 

1×n  vector of applied joint torques (control inputs), M(q)  
is an nn×  inertial matrix, )qB(q, &  is an nn×  matrix of 
Coriolis and centrifugal forces and G(q)  is an 1×n  gravity 
vector. 

The inertial matrix M(q)  is symmetric and positive 
definite. It is also bounded as a function of q : 

II 21 µµ ≤≤ M(q) . )qB(q,(q)M && 2−  is skew symmetric 

matrix, that is, 0]2[ =− xx )qB(q,(q)MT && , where x  is an 
1×n  nonzero vector. 
It is assumed that a robotic manipulator, as is described 

by (1), has some known parts and some unknowns and 
therefore, there exist uncertainty in the system model. Thus, 
M(q) , )qB(q, &  and G(q)  can be described by 

 

                       M(q)(q)MM(q) ∆+= ˆ  

                       )qB(q,)q(q,B)qB(q, &&& ∆+= ˆ  

G(q)(q)GG(q) ∆+= ˆ                                  (2) 
 

where (q)M̂ , )q(q,B &ˆ and (q)Ĝ are the known parts, 
M(q)∆ , )qB(q, &∆ and G(q)∆  are the unknown parts. For 

simplification in notation, we avoid writing the variables in 
the parentheses of the above matrices and vectors. 
 

B. Designing A Classical Variable Structure Controller 
 In the design of variable structure controller for 
robotic manipulators, the control objective is to drive the 
joint position q  to the desired position dq . So by defining 
the tracking error to be in the following form 
 

dqqe −=                                      (3) 
 

the sliding surface can be written as 
 

λees += &                                      (4) 
 

where ],...,,...,[ 1 nidiag λλλ=λ , in which iλ  is a positive 
constant. The control objective can now be achieved by 
choosing the control input so that the sliding surface 
satisfies the following sufficient condition 

iii ss
dt
d η−≤2

2
1                               (5) 

where iη  is a positive constant. Equation (5) indicates that 
the energy of s  should decay as long as s  is not zero. To 
set up the control u , define the reference states to be 
 

                              λeqsqq dr −=−= &&&  
eλqsqq dr &&&&&&&& −=−=                             (6) 

 

Now the control input u  can be chosen to be in the 
following form 
 

                              )sgn(ˆ sKuu −=  

AsGqBqMu rr −++= ˆˆˆˆ &&&                     (7) 
 

where ],...,,...,[ 11 nnii kkkdiag=K  is a diagonal positive 
definite matrix in which iik 's are positive constants and 

],...,,...,[ 1 ni aaadiag=A  is a diagonal positive definite 
matrix in which ia 's are also positive constants. Putting (7) 
into (1) leads to 
 

)sgn(sK∆fA)s(BsM −=++&                  (8) 
 

where ∆Gq∆Bq∆M∆f rr ++= &&& . It can be proved that by 
choosing K such that 
 

boundiii fk ∆≥                               (9) 
 

where 
boundif∆  is the boundary of if∆ , the overall system 

is asymptotically stable. 
Proof: Consider V  in equation (10) as the Lyapunov 

function candidate 
 

MssTV
2
1

=                              (10) 
 

Since M  is symmetric and positive definite, then for 
0≠s , 0>V . Now taking the derivative of V  with 

respect to s , one can obtain 
 

                 ]sgn[ Bs(s)K∆fA)(BsT +−++−=V&  

AssT
iiii

n

i
i skfs −−∆= ∑

=

)])sgn([(
1

              (11) 

 

Using (9), when 0>is , 
 

                      0)sgn( ≤−∆=−∆ iiiiiii kfskf  
 

and when 0<is  
 

                      0)sgn( ≥+∆=−∆ iiiiiii kfskf  
 

so that 
                             0)]sgn([ ≤−∆ iiiii skfs  

Therefore 

                         0)])sgn([(
1

≤−∆∑
=

iiii

n

i
i skfs  

Since A  is a positive definite matrix, 0≤− AssT . With 
this result, it can be proved that 



 
Fig. 1. Robust Neural network control (RNNC) of robotic manipulators. 
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i
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 The Lyapunov function candidate in (10) can be 
considered as an indicator of the energy of s . As 

0≤V& ,and 0=V&  only when 0=s . Therefore the decay of 
the energy of s , as long as 0≠s , is guaranteed and the 
sufficient condition in (5) is satisfied. So the overall system 
is asymptotically stable. 
 

III.  ROBUST ADAPTIVE NEURAL NETWORK CONTROL 

 There are two major disadvantages in designing the 
classical variable structure controllers. First, because of the 
control actions which are discontinuous across s , there is 
chattering in a boundary of the surface s . Such high 
frequency switching (chattering) might excite unmodeled 
dynamics and impose undue wear and tear on the actuators, 
so the control law would not be considered acceptable. 
Second, the prior knowledge of the boundary of 
uncertainty is required in compensators. If boundary is 
unknown, a large value has to be applied to the gain of 
discontinuous part of control signal and this large control 
gain may intensify the chattering on the sliding surface. 
 In this section, a Robust adaptive neural network 
controller (RANNC), to avoid the aforementioned 
problems, has been proposed. For this purpose single-input 
single-output (SISO) RBF neural networks, as continuous 
approximation of the elements of )sgn(sK  in the control 
law (7) are used. The control input is written as 
 

KAsGqBqMu rr −−++= ˆˆˆ &&&                    (13) 
 

where T
ni kkk ],...,,...,[ 1=K  is an 1×n  vector in which ik  

is the output of the ith RBF neural network. The control 
block diagram of the RNNC is shown in Fig. 1, where the 
PD block indicates the computation of λ+dtd  and the 
input of each RBF network is is  and the corresponding 
output is ik . The applied RBF neural networks have the 
following structure 

)( ik
T

ki sk
ii

Φ=W                             (14) 

where 
ikW is the 1×m  vector of the output layer weights 

and m  is the number of nodes in the hidden layer and 
T

ikikikik ssss m

i

j

iii
)](),...,(),...,([)( 1 ϕϕϕ=Φ  is the 1×m  vector 

of outputs of the hidden layer nodes, whose elements (basis 
functions) are chosen as Gaussian-type function, expressed 
by 
 

)2exp()( 22 jjj

i iiiiik ss σµαϕ −−=             (15) 
 

where j

iµ  and j

iσ  are the center and variance of the jth 
basis function of the ith RBFN, respectively and iα  is a 
positive constant. 
 In continue, an adaptive law is designed to guarantee 
that ik 's can compensate the system uncertainties.

ikW is 
chosen as the parameter to be updated and therefore is 
called the parameter vector, and )( ik s

i
Φ  is called the basis 

function vector which can be regarded as the weight of the 
parameter vector. Substituting (13) into (1) leads to 
 

K∆fA)s(BsM −++−=&                     (16) 
 

where the definition of ∆f  is the same as that in part A of 
section I. It has been proven ([8]) that the RBF neural 
networks are universal approximators if their basis 
functions are chosen as a scaled version of Gaussian 
functions, which means that these neural networks are 
capable of approximating any real continuous function on a 
compact set to arbitrary accuracy. 
 Defining

idkW so that )( ik
T

ki sk
iid

Φ=W  is the optimal 

compensation for if∆ . According to the property of 
universal approximation of RBF neural networks, there 
exists 0>iδ  satisfying 
 

iik
T

ki sf
iid

δ≤Φ−∆ )(W                      (17) 
 

where iδ  is arbitrary and can be chosen as small as 
possible. Defining 
 

idii kkk WWW −=
~                          (18) 

 

It can be shown that by choosing the adaptive law as 
 

)(~
ikik ss

ii
Φ=W&                           (19) 

Fig. 2. Illustration of the situation depicted in the simulation. 



 
Fig. 3. Tracking of joint 1 in RANNC. 

 
Fig. 4. Tracking of joint 2 in RANNC. 

 
the overall system is asymptotically stable with respect to 
s  and the actual joint angular positions converge to the 
desired ones. 
 Proof: Choose the Lyapunov candidate as 
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where M is symmetric positive matrix and 0~~
>

ii k
T

k WW , 
therefore V  is positive definite. Now Consider the 
derivative of V  
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Fig. 5. Sliding surface of joint 1 in RANNC. 

 
Fig. 6. Sliding surface of joint 2 in RANNC. 
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Fig. 7. Control gain of joint 1 in RANNC. 

 
Fig. 8. Control gain of joint 2 in RANNC. 

 

Moreover, since the adaptive law in (19) is chosen as 

                               )(~
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ii
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then 

∑
=

Φ−∆+−=
n

i
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From (17), there exist 
 

                          iik
T

ki sf
ii

δ≤Φ−∆ )(W  
 

where iδ  can be chosen as small as possible. Now by 
assuming 

                     iiiik
T

ki ssf
ii

ρδ ≤≤Φ−∆ )(W  

where 10 << iρ , the second term at the right side of (21) 
satisfies 

                 22)]([ iiiiik
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Fig. 9. Control torque of joint 1 in RANNC. 

 
Fig. 10. Control torque of joint 2 in RANNC. 
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Now by simply choosing iia ρ>  
 

0)(
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n

i
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In (22) since 0)( <− ii aρ , 0=V&  only when 0=is . Thus, 
the overall system with the adaptive law in (19) is 
asymptotically stable with respect to s . In other words 
 

0)(limlim =+=
∞→∞→

λees &
tt

                   (23) 
 

or equivalently 
 

                            dqqe =⇒=
∞→∞→ tt

lim0lim  

dqqe &&& =⇒=
∞→∞→ tt

lim0lim                      (24) 
 

 Therefore, it is proved that the robust adaptive neural 
network control input (13) drives the actual joint positions 
to their desired values. 



 
Fig. 11. Tracking error of joint angles in RANNC. 

 

IV.  SIMULATION RESULTS 

 In this section, the proposed Robust adaptive neural 
network controller (RANNC) is used on a two-link robotic 
manipulator, whose parameter matrices are as follows [9] 
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where 1m  and 2m  are the masses, and 1l  and 2l  are the 
length of the links 1 and 2, respectively. They are chosen 
as 41 =m , 22 =m , 21 =l , 12 =l . The situation that is 
simulated is shown in Fig. 2. In this example, the 
manipulator is expected to take a load from position one to 
position two. In the first stage, the manipulator moves from 
the initial position to the position 1 along a predefined 
trajectory during 2 s. It stays there for 1 s to take the load 
and start to move from position one to position two at t=3 
s. During the second stage, a disturbance is added to link 1 
at t=3.8 s and disappears at t=4 s. From the above 
description, there are totally three dynamic changes in the 
whole process because of the added load, disturbance and 
coming back to be normal when the disturbance 
disappears. In this simulation, the system model for the 
control input is estimated by applying a factor to the 
corresponding parameter matrices of the original system, 
i.e., GG 7.0ˆ = , BB 8.0ˆ = , 1111 9.0ˆ MM = , 1212 9.0ˆ MM = , 

2121 9.0ˆ MM = , 2222
ˆ MM = . The control input u  is chosen 

as in (13), where ]50,50[diag=A , ]10,10[diag=λ  and 
each element of K  is constructed by an RBF neural 
network with 10 nodes in its hidden layer. The initial 

parameters of each RBF neural network are evaluated by 
gradient descent algorithm to approximate a continuous 
quasi-signum function. Also the weights of RBF neural 
networks are updated during on-line control with the 
adaptive law given by (19). 
The simulation results are shown in Fig. 3 - Fig. 11. As is 
seen in Fig. 3 and Fig. 4, the joint angles track the desired 
trajectories and the RANNC drive the robotic manipulator 
to its desired positions. Moreover, there is no chattering in 
the sliding surface as shown in Fig. 5 and 6 and the values 
of K  converge to constant in the steady-state as shown in 
Fig. 7 and 8. In Fig. 9 and 10, it is also shown that there is 
no chattering in the control torques of RANNC. Finally, 
Fig. 11 shows that the tracking errors converge to zero. 
 

V.  CONCLUSION 

 In this paper a robust adaptive neural network 
controller based on variable structure system is proposed 
for robotic manipulators. The discontinuous parts of the 
classical variable structure controller are replaced by RBF 
neural networks, which are nonlinear and continuous, to 
avoid the chattering. The weights of the output layer of 
RBF neural networks are updated in an online manner to 
compensate the system uncertainties and to guarantee the 
system stability without any prior knowledge of the system 
uncertainties. In addition, the RBF networks used in the 
controller are SISO systems. Therefore the learning 
process is simple compared to that of multi-input systems 
developed previously. Also the design and implementation 
of the controller is simplified. In addition, the stability and 
convergence of the overall system are proved by the 
lyapunov method. Finally, simulation results situation are 
provided to show the effectiveness of the proposed scheme. 
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