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Abstract— The development of (SMA) actuated devices is
hindered by the existence of an accurate and yet simplified
model. The highly non–linear behavior that is exhibited by these
materials does not allow a straightforward application of the
classical control strategies met in the field. This current research
effort proposes the linearization of a simplified model describing
the “shape memory effect” of SMAs and the implementation
of a PID controller, which is tuned with the aid of the
Linear Quadratic Regulator theory, based on Linear Matrix
Inequalities techniques. The proposed scheme is applied to a
single–DOF robot manipulator that is activated by two SMA
wires and the overall model is controlled via the utilization
of the calculated LMI–tuned PID controller. Simulation results
are presented that prove the efficacy of the proposed control
scheme.

Index Terms— Shape Memory Alloys, Robotic manipulator,
Model verification, LMI.

I. INTRODUCTION

The implementation of SMAs into a new generation of ac-
tuators is an ongoing procedure, aiming on a broader impact
on everyday applications. Still, the absence of a “convenient”
model, from a controlling point of view, restricts the new
applications to simplified control methods. Though, many
efforts have been made on capturing the physical phenomena
occurring in the transformations presented in SMAs [1–6],
the grade of complexity and the micro–mechanical variables
used result in an impractical model. The values of the afore-
mentioned constants and variables are not easily tracked, thus
the overall model is not easily verified.

The effort on modelling smart materials is an ongoing task
and has been approached by different points. Especially the
problem of modelling Shape Memory Alloys in a micro–
mechanical level has been met in [7–9]. A more advanced
approach is encountered in [10, 11], where the implementa-
tion of Finite Elements seems to provide the necessary means
for capturing most of the physical properties present in Shape
Memory Materials.

Smart materials, in general, owe their special properties
in the reversible phase transformations easily identified at
the microscopic level. The conditions, though within which
the transformation may take place depend on both the
environmental conditions applied to the material and its inner
characteristics. The first group of external stimulation may
advert to physical parameters such as existing strain, applied
stress, environmental temperature, while the second group of
parameters may refer to the lattice orientation, the existence
of gaps within the overall structure and so on. As a result,
these inherent properties of smart materials are not easily
implemented into a single valued function [12]. Thus, a

simplified model would utilize the hysteretic stress–strain, or
stress–temperature relations resulting in a highly non-linear
and hysteretic model.

The aforementioned properties of smart materials apply to
SMAs when they exhibit either the “memory” effect or the
“superelasticity” effect. The first case applies to the response
obtained by the material (SMA) after a thermal stimuli, while
operating within the hysteresis loop and the second one
applies to the response corresponding to a mechanical (stress
induced) stimuli, at operating points above the hysteretic
stress–temperature relationship. The lattice energy balance
for each of these two cases, as the temperature (energy)
operating point moves within and above the hysteresis loop,
is different, thus inducing a different macroscopically ob-
served behavior. The potential energy’s local minimum is the
criterion for the triggering of the martensitic transformation.
Each one of the two states possess different values of
potential energy under the given environmental conditions.
The external supply of energy (heating, application of stress)
force the material to undergo a transformation (martensitic or
austenitic) in order to reduce the overall energy (free energy)
and to acquire a new tranquility point.

The memory effect is characterized by the innate produc-
tion of stress, so that the material is able to restore its overall
original shape. On the contrary, the superelasticity effect
is determined by the capability of the material to absorb
externally applied forces. The difference in the response of
the same material at two different operating points, produces
different demands in the modelling of the material.

This current research is concerned with the modelling of
the shape memory effect, which allows the employment of
SMA as a thermal actuator. In the rest of the paper, the
special characteristics of the shape memory transformation
and the equations describing the overall behavior of the
material are discussed in Section 2. The overall model of the
haptic finger is provided in Section 3 while the linearization
of the nonlinear dynamical equations is given in Section 3.
The tuning of the PID with the aid of the LMIs theory is
presented in Section 4, along with the simulation results
generated for the closed loop system. Finally concussions
are drawn in Section 5.

II. SMA MODELLING

The previously described transformation for the smart
materials, is also present in the responsible mechanism for
the behavior of SMAs. A two way (reversible) transformation
is observed between two equilibrium states–the high energy
(temperature) state and the lower energy (temperature) one.



The forward transformation is responsible for the transition
from the upper temperature state to the lower temperature
state and is achieved by the abduction of temperature from
the material. Thus, its overall temperature drops from the
upper equilibrium state to the lower one Ms → Mf

(Martensitic starting temperature to Martensitic finishing
temperature). The reverse transformation is also possible,
from a lower temperature state towards an upper temperature
state As → Af (Austenitic starting temperature towards
Austenitic finishing temperature). The kick–off temperatures
for each of the two transformations are different and result
in a hysteresis loop similar to the one presented in Figure 1.
The stress–temperature curve presented in Figure 1 is typical
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Fig. 1. Typical hysteresis loop met in SMAs

for SMAs exhibiting either the shape memory either the
superelasticity phenomenon. These both phenomena exist in
SMAs as they are due to the same mechanism, with the
only differences that are: a) triggered by different exogenous
factors, and b) that they exist under different environmental
conditions.

The martensitic transformation is a diffusionless transfor-
mation, which when induced in SMAs, results in a reori-
entation of the parent (previously existing) lattice structure.
The mechanism of the lattice reorientation is depicted in
Figure 2. The constraint of the non–diffusion and the memory
of the atoms’ original place upon the lattice is the cause for
the reversibility of the phenomenon and the shape memory
effect that is macroscopically observed. When the hysteresis
loop is shifted above the upper austenitic finish temperature
(environmental condition is satisfied), the lattice reorientation
occurs in order to relief the material from the additional
stress induced. When the additional stress seizes to exist,
the material recovers its original lattice configuration and
therefore its overall shape.

The inverse phenomenon is applicable in the shape mem-
ory effect. The heating induced (different to the previously
mentioned environmental variable) upon the material, rises
the material’s temperature above the corresponding value
(As) and triggers the ongoing of the transformation. The
lattice reorientation results in a different shape, thus produc-
ing a value of stress much larger than the one applied for the
deformation of the material. The amount of stress obtained,

Fig. 2. Lattice reorientation upon transformation

may be described by Hooke’s law as stated in [7]:

σ = Eεe = E[ε − εt − α(T − Tr)] (1)

where σ is the unaxial stress produced, εe is the elastic strain,
ε is the total strain and εt is the transformation strain, while
E and α are the Young’s modulus and the thermal expansion
coefficient respectively and may be substituted to the above
equation as:

E = EA + ξ(EM − EA) (2)

and

α = αA + ξ(αM − αA). (3)

The dominant phase within the material is characterized
by the micromechanical variable ξ, which describes the
volumetric fraction of martensite upon austenite. Each one
of the E and α variables is a function of ξ, as each one
of the two states (martensite/austenite) possesses different
physical properties. The corresponding values for each state
are incorporated in the material and are defined as: a)
EA and EM for the pure austenitic and pure martensitic
materials’ Young’s modulus, and b) aA and aM for the pure
austenitic and pure martensitic thermal expansion coefficient
respectively.

Since the transformation is explicitly dependent upon the
volumetric fraction of martensite and the material is loaded
only under tension, the transformation strain is expressed by
means of ξ : εt = Hξ, where H is the maximum axial
transformation strain.

The overall transformation phenomenon described by the
micromechanical variable ξ is given by the simplified expo-
nential model of Tanaka [13] and two different expressions
account for the forward and the backward transformation
respectively.

ξM = 1 − exp
[

ln(0.01)
Ms − Mf

(Ms − T )
]

(4)

for Mf ≤ T ≤ Ms, whereas for the inverse transformation
the afforementioned equation becomes:

ξA = exp
[

ln(0.01)
As − Af

(As − T )
]

(5)



for As ≤ T ≤ Af .
Both models presented for the austenitic and the marten-

sitic transformation are experimentally obtained [13] and re-
veal some weaknesses. The aging effect and the co–existence
of multiple martensitic layers, at the same time are not
taken into account, therefore a diversion from experimentally
obtained results should be expected.

Nevertheless, the dynamic response for an ideal material
is accurately captured and the simplicity of the model
(there is absence of multiple micromechanics variables, no
higher order derivatives are utilized and the switching from
the one model–austenitic–to the next one –martensitic– is
performed in steady state) allows an easily implementation
in a software package and cost effective simulations of the
highly non–linear, hysteretic material. The basic drawback
of the current model is that the physical constants, such as
the H, EA, EM , αA, αM , etc. must be accurately tuned,
when considering the verification with the experimental data.

III. HAPTIC FINGER MODEL

In the current research effort, SMAs are utilized as thermal
actuators in a haptic finger. More specifically the parameters
of the simulation have been tuned in order to match the
environmental variables applied in the experimental setup.
The operation of the haptic finger may be found in Figure 3,
where the placement of the SMA wire, along with the
produced forces and torques are presented. The necessary

ä

FSMA

B

B

MSMASMA

SMA
wire

Fig. 3. Free Body Diagram for the single DOF haptic finger

torque is provided by the use of SMA in the role of tendons.
The initial configuration of the system forces the tendon to
be stressed and deformed due to the link’s own weight. By
the application of external voltage, the SMA is heated in
accordance to Joule’s law and the shape memory effect is
activated. Each one of the two tendons, that is responsible
for the positioning of the link –which are placed at each
side of the finger’s skeleton, contracts as it undergoes the
shape change and produces a magnitude of stress enough to
cancellate the effect of gravity on the link. The dynamics of
the single DOF haptic finger is:

τ =
Mg� cos(θ)

2
+

1
3
M�2θ̈. (6)

Equation 7 provides a more accurate description of the
process discussed in the previous.

FSMA · δ =
Mg� cos(θ)

2
+

1
3
M�2θ̈ (7)

The constants of the above equations are defined from: a) the
distance of the beneficial factor of FSMA from the center of

rotation, δ, b) the mass of the link M , d) the horizontal
distance of gravity from the rotational center l, and e) the
angle written from the link to the horizontal axis θ. The last
term of the previous equation is neglected as the dynamics
of the system are not involved in the current control issue.
Back substitution of the aforementioned equations results in
the expected non–linear and hysteretic model.

IV. DYNAMICS LINEARIZATION

The main difficulties induced in the current model
stem from the nature of the utilized actuator. The stress–
temperature response of the SMA may be found in Figure 4.
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Fig. 4. Stress-Temperature hysteresis with the presence of the linearized
systems

The exponential response obtained for the stress–
temperature relationship is due to the exponential model of
Tanaka [13] which is incorporated into the current model.
As previously discussed, the martensitic volume fraction ξ
is the micromechanical parameter that is responsible for the
triggering of the shape memory effect phenomenon. It takes
values between 0 → 1, where 0 represents the pure austenitic
state and 1 the pure martensitic state.

The non–linear phenomena are induced by ξ where con-
fronted by linearizing the stress–temperature curve at prede-
fined operating points T o. The utilized operating points, are
presented in Table I.

TABLE I

OPERATING POINTS

T o
heating σheating T o

cooling σcooling

33 -0.02 99 3.34
67.42 0.55 47.4 1.78
70.25 1.57 44.2 0.84
73 2.26 41 0.33
76 2.7 37.8 0.176

78.75 2.98 34.6 0.08
81.6 3.2 33 -0.002
91.5 3.4 x x

Table I presents the chosen temperature operating points
for the linearization of the heating and the cooling phenom-
ena respectively. Eight linear models were chosen to describe
the heating of the material, whereas seven models are capable
of describing the cooling process. The stresses predicted by



the model are indicative of the capabilities provided through
the use of the specific material. The values of the constants
used for the specific simulation are given in Table II.

TABLE II

PHYSICAL PROPERTIES

SMA physical properties

EA 69 GPa EM 30 GPa
aA 11 × 10−6 oC−1 aM 6.6 × 10−6 oC−1

As 66 oC Af 83 oC
Ms 49 oC Mf 33 oC
H 3.5% Tref 23 oC

Haptic finger properties

δ 6.5 × 10−3 m L 0.05 m
g 9.81 m

sec2
M 0.03kgr

The block–diagram of the non–linear model in a schematic
representation is presented in Figure 5.
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Fig. 5. Topology of the open-loop system

The system’s excitation is the temperature and the rotation
of the haptic finger is the output of the model. The initial
configuration of the robot is chosen as the 20o below the
horizontal axis and the stress induced by the SMA wire
results in a final configuration of approximately 5o below
the horizontal axis. The angles that appear in the simulation
results that are below the horizontal axis assume a positive
sign. The open–loop response of the model is depicted in
Figure 6.
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Fig. 6. Angle-Temperature response of the open loop system

The previously described linearization of the stress pro-
duced by the SMA with respect to the input–temperature,
results in an equation of the form:

δσ = αcon + βcoeff · δT (8)

where the higher powers of δT are neglected. Introduction of
the previous equation to the one describing the overall model

(7), gives a non–linear expression with respect to θ. The
operating point of θo = 10o is chosen for the linearization
of the cosine factor. Thus the linear equation describing the
overall model is of the following form:

αθδθ̈ − βθδθ = αconδ · δT + βcoeff (9)

and the set of the constitutive equations yields in:[
δθ̇

δθ̈

]
=
[

0 1
βθ
αθ

0

] [
δθ

δθ̇

]
+
[

0
βcoeff δ

αθ

]
δT +

[
0

αcon
αθ

]
(10)

In the last two equations (9) and (10) αcon, βcoeff , are the
matrices produced for the linearized models around each op-
erating point. Specifically, αcon represents the accumulation
of the constant terms present in each model and βcoeff the
terms of δT .

The closed loop system involves the implementation of
a PID controller where the tuning of the KP ,KI and KD

parameters is accomplished via the utilization of appropriate
formulated LMIs [14].

V. LMI BASED PID TUNING

The constitutive model provided by (10) is sufficient for
the tuning of the PID controller as discussed in [14]. A state
feedback control law of the form:

u = −Kx = −R−1BT Px (11)

is assumed for the constitutive model

ẋ = Ax + Bu

y = Cx (12)

and for the minimization of the LQR quadratic cost:

J(u) =
∫ ∞

0

(
xT Qx + uT Ru

)
dt (13)

where Q,R are positive semidefinite matrices for the con-
trollable system (sub–systems) (A,B) and P is the solution
of the Riccatti equation:

AT P + PA − PBR−1BT P + Q = 0. (14)

The problem of solving the Riccatti equation in (14) is
surmounted by the reformulation of (14) with the aid of
Shur’s complement [15]. Thus the solution of the Riccatti
is transformed into its equivalent formulation of finding a
matrix P , that satisfies simultaneously the following matrix
inequalities:⎡
⎣ AP̃ + P̃AT + BY + Y T B P̃ Y T

P̃ −Q−1 0
Y 0 −R−1

⎤
⎦ ≤ 0 (15)

P̃ > 0 (16)

[
γ xT (0)

x(0) P̃

]
≥ 0 (17)

where Y = −KP̃ and P̃ = P−1. The third LMI (17) is
incorporated in order to relax the strict constraint of setting
the quadratic cost to zero:

Jmin = xT (0)Px(0) (18)



thus bounding instead the cost Jmin with a desired value γ.

Jmin ≤ γ (19)

In our work, γ is a variable of the problem and its minimum
value is sought, so as to guarantee the solvability of the set
of LMIS (15-17) and the convergence of the algorithm. The
proposed control strategy is also valid for a polytopic set of
subsystems {[A1, B1], . . . , [An, Bn]}.

The implementation of a static gain state feedback PID
controller requires the existence of a triplet of states. Thus the
original state space model (10) is augmented with a pseudo-
=state representing the error signal. The constitutive model
is reformulated to the one shown in (20).

⎡
⎣ δθ̇

δθ̈
−e

⎤
⎦ =

⎡
⎣ 0 1 0

βθ

αθ
0 0

1 0 0

⎤
⎦ ·

⎡
⎣ δθ

δθ̇
− ∫

edt

⎤
⎦ +

⎡
⎣ 0

βcoeff δ

αθ

0

⎤
⎦ · δT +

⎡
⎣ 0

αcon

αθ

0

⎤
⎦ (20)

Incorporation of the constitutive model in (20) to the set
of LMIS in (15 -17), produces the static gains of the PID
controller as elements of the vector K of (11).

For the aforementioned case, the static gains KP ,KI ,KD

as calculated by the LMI algorithm are given: KP = −4.136·
10−4, KI = 2.573·10−3 and KD = 6.64·10−5. The gains of
the PID controller provided, assume small values producing
thus control signals of small magnitude. The control effort
applied for the current system, remains within physically
realizable bounds, while excludes the demand for additional
constraints on the control signal umax.

The linearization of the model proposed in Section IV, is
valid in small regions around the equilibrium point defined
in Table I. The control effort produced by the PID controller
is also responsible for the fitting of the output around the
equilibrium state. Thus a pre–compensator is implemented,
in order to transfer the model in a region near a predefined
equilibrium. A schematic representation of the closed loop
control topology is provided in Figure 7.
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Fig. 7. Topology of the closed loop system

The calibration of the feed–forward controller is per-
formed by the use of the open–loop response of the system
and the construction of correlation mapping scheme between
the input (temperature T ) and the desired output (angle θ).
The return mapping scheme is constructed for the expected
system response at the operating points T o chosen in Table
I.

VI. SIMULATION RESULTS

The response of the closed loop system for different values
of reference inputs is captured in the ensuing Figures.

The time delay observed in the response of the closed–loop
system is induced in the modelling of the system in order to
account for the delay caused by the heat transfer, which is the
main factor for prohibiting the SMAs of a larger bandwidth.
The time delay is incorporated in the simulation, as may be
found in Figures 8–11 with a value of 0.4sec, but was not
included during the design of the controller. The presence of
the delay will be dealt with in a future stage of our work
– after the incorporation of the heat transfer problem. The
overall model is not influenced by its presence, as the delay
is introduced at the input of the model presented previously
by Figure 5.

Figures 8–11 depict the angle θ response of the haptic
finger, under closed–loop control and a step input as the
excitation signal. The value of the excitation is the one cor-
responding to the desired–reference angle. Thus, the response
obtained is the step response of the angle of the finger,
starting from the initial configuration of the 32o and resulting
to the desired final configuration of 5o, 10o , 15o and 20o

respectively.
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Fig. 8. Closed loop response with 5o reference signal
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Fig. 9. Closed loop response with 10o reference signal

In figures 8, 9, 10 and 11 the robustness of the static gain
PID controller, tuned with the LMI method is demonstrated.
The responses obtained are close to the ones expected, as
they are typical for a first-order system.
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Fig. 10. Closed loop response with 15o reference signal
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Fig. 11. Closed loop response with 20o reference signal

The simulation results presented in Fig. 11 reveal the
inability of the controller to lead the system to the desired
operating point as it is designated by the reference signal
(20o desired angle). This anomaly can be attributed to low
accuracy of the linearization procedure as it is depicted in
Fig. 4. The linear subsystems responsible for the modelling
of the low stress–low temperature operating points of the
hysteresis loop of the martensitic transformation and the high
stress–high temperature operating points of the austenitic
transformation deviate from the response predicted by the
non-linear hysteretic model. Thus, the linear sub-systems
fail to provide the nominal stress predicted by the “real
system” and the resulting torque is insufficient for elevating
the haptic finger to the desired final value. Despite the latter
observation, the response obtained by the closed–loop system
provides the necessary means for moving on the coupling
procedure with the experimental setup.

VII. CONCLUSIONS

The special characteristics revealed by the use of SMAs
cannot be fully exploited, unless a standardized control strat-
egy can be applied. The process of linearizing the simplified
model chosen, proves to be an accurate solution to the effort
of implementing a PID controller that it is tuned in the LMI
sense.

A more extensive model will include the heat transfer
and conducting process of SMAs and the proper tuning of
the constants met in the current model in order to achieve
an agreement with experimental data. A simplified, yet

accurate, model is pursued so that more sophisticated control
techniques can be applied.
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