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 Abstract – This paper presents a two-phase kinodynamic 
planning algorithm, which uses a randomized planner to 
compute low-cost robotic motions, and optimal control to 
locally optimize them. The direct transcription approach is 
used with an NLP numerical optimization algorithm. The 
algorithms are tested on motion planning for a non-holonomic 
autonomous vehicle. The results indicate that the two-phase 
approach is effective in computing optimal motions. However, 
the dense algebra NLP solver is very time consuming for the 
optimization of long paths and sparse algebra solvers should be 
utilized. 
 
 Index Terms – kinodynamic, planning, optimal, direct 
transcription, NLP. 
 

I.  INTRODUCTION 

 Autonomous and semi-autonomous robotic vehicles 
have already been used in space exploration applications, in 
military operations, and in entertainment applications (e.g. 
museum guides). They also hold great promise of entering 
the areas of services (e.g., health sector) and field machinery 
operations, with agriculture being a potentially big market. 
In most applications, the cost of introducing autonomous 
vehicles could be justified by savings from the optimal 
execution of the tasks these machines undertake. Optimality 
may mean faster execution, reduction of fuel costs, 
minimization of outcome variance, reduction of human 
health risk, etc. The problem of executing tasks in an 
optimal manner is nontrivial. In general, it is always coupled 
with the optimal motion planning problem. A motion 
planning algorithm is said to be complete if it always finds a 
feasible motion in a finite number of steps, if such a motion 
exists; otherwise it terminates with an empty solution. The 
computational complexity of motion planning has been 
investigated for motion amidst polyhedral obstacles. It has 
been shown that the problems of finding a feasible or a 
shortest Euclidean path are both NP-hard. This means that 
the complexity of such problems scales exponentially in the 
dimension of the state and the number of obstacles. Hence, 
complete planners are restricted to solving relatively simple 
problems, and are not practical for complex real-world 
applications. 
 Randomized path planning algorithms have been used 
successfully to solve high-dimensional path-planning and 
kinodynamic motion planning problems, which 
conventional   deterministic planners have not been able to 
handle. In juxtaposition to deterministic planners, which 
perform a systematic search of the robot’s configuration 
space based on some optimality or heuristic criteria, 
randomized planners rely on random sampling of the robot’s 

configuration space in order to construct a feasible path. 
Different sampling schemes have been proposed for 
efficient coverage of the configuration space, ranging from 
random walks [1], [2] to random search trees [3], [4], [5] 
which expand towards unexplored regions of the space. 
Randomized planners are probabilistically complete, which 
means that in theory, a feasible path will be computed with 
probability which approaches one as the computation time 
grows to infinity.  However, practice has shown that for real 
problems a feasible path can be reached in a finite number 
of iterations, which depends on the complexity of problem.  
In many applications an optimal, instead of just a feasible 
motion is required by the planner. The feasible paths 
computed by the repeated execution of randomized planners 
may not belong to the same homotopy class. Hence, such 
paths are not optimal in some sense. Furthermore, the paths 
are not even “smooth” because of the randomness involved 
in their generation. For PRM-based planners work has been 
done [6], [7] to select an optimal path from the roadmap 
graph based on task-dependent optimality criteria, and also 
to locally improve this path [8], [9] by  converting it to a 
curve, adding or moving nodes from it. This paper presents 
a two-phase motion planning algorithm which can compute 
low cost motions, given a desired cost function. The planner 
is kinodynamic, i.e. it computes optimal state trajectories, 
where a state may contain derivatives of variables (e.g. 
speed). In the first phase the algorithm utilizes RRT-based 
[4] randomized planning to compute feasible paths of 
monotonically decreasing cost. In the second phase the 
motion optimization is formulated within the optimal 
control framework and a numerical algorithm is used to 
minimize the cost functional of the entire motion. The major 
contributions of this work are the formulation of a 
framework for optimal control based smoothing of an RRT 
produced plan and the extension to the biased bidirectional 
RRT planner. 

II. PROBLEM STATEMENT 

 Consider the motion of a non-holonomic car-like robot 
in the plane among static obstacles (Fig. 1).  

 

Fig. 1 Car-like robot model 



The x and y coordinates give the position of the car’s rear-
wheel axle midpoint [  ]Tx y=P . The unit vector v has its 
origin at P and lies along the direction of motion. The 
robot’s orientation is given by θ, the angle between the 
positive x-axis and v. The vehicle’s front-wheel turning 
angle is φ, and its rotational velocity ω, and the linear 
velocity and acceleration are v and a respectively. The robot 
state is T[     ]x y vθ φ=x with dimension Nx=5, and the 
control vector is T[  ]a ω=u with dimension Nu=2. The 
robot’s dynamic model is described by a set of differential 
equations  of the form: ( , )=x f x u
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The state and control vectors are subject to constraints of 
the form  
 

  (2) min max min max,≤ ≤   ≤ ≤x x x u u u .
 
For maximum flexibility, the geometric descriptions of the 
robot and the obstacles are assumed to be given as 
collections of geometric primitives (e.g. triangles). Hence, 
the analytic expressions for the obstacles are not known. 
However, it is required that a minimum distance function 
d(x) between the robot and all obstacles can be computed 
for any robot state. Hence, a state is collision-free when 
 
  (3) ( ( )) 0d t ≥x
 
Given fixed, collision-free initial and goal states xI and xf at 
times t0 and tf respectively, and a cost 
functional ()( (), , )fJ tx u , a feasible control function  is 
desired, which results in a low cost collision-free state 
trajectory . The cost function expresses the desirable 
optimization criteria, such as minimum length path, 
minimum control effort, minimum time, etc.  
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The problem can be approached under the optimal control 
framework [10], [11], where in general an optimal path can 
be computed by the minimization of a Lagrangian cost 
function of the form 
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where ψ is a cost function. These cost functions encode the 
desirable optimization criteria, but may also contain 
penalty-terms, which enforce the problem constraints.  
In the general case, such problems can only be solved 
numerically. There are two general approaches for their 
solution [12]. The indirect approach uses the Pontryagin 
minimum principle to minimize the problem’s Hamiltonian 
[13]. The basic problem with such approaches is that the 
adjoint equations and the transversality conditions for the 
system have to be computed analytically for each problem. 

This is not well suited to automated planners, which are 
required to solve problems for different kind of situations 
(e.g., kinematic, or dynamic motion equations, car-trailer 
combination, etc.) Furthermore, when path inequality 
constraints are present (e.g. obstacles) it may be required to 
predetermine the sequence of constrained and unconstrained 
sub-motions to formulate the correct boundary value 
problems. The direct approaches don’t use the maximum 
principle; instead they cast the optimal control problem into 
a classical constrained Nonlinear Programming Problem 
(NLP), for which many numerically efficient procedures 
exist.  

III. DIRECT TRANSCRIPTION OPTIMIZATION 

 The main idea behind direct transcription algorithms is 
the following [12]. The state equations are discretized at N 
time intervals defined by the following time instants:  
 

 0 1 2 Nt t t t t f< < < =  (5) 
 

The robot’s state at step k is T[     ]k k k k k kx y vθ φ=x and the 
control vector is A simple Euler discretization 
of the state equations is the following: 

T[  ] .k k ka ω=u
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Then, all variables to be optimized are aggregated into a 
single vector of dimension n = Nx(N+1)+ NuN+N+1, which 
constitutes the NLP state vector:  
 

 0 1 1 0 1 0 1        T T T T T T
N N t t t−⎡ ⎤= ⎣ ⎦X u u u x x x  (7) 

 
The optimization criterion equation (4) can be written in 
discrete form as 
 

 ( )J = Ψ X  (8) 
 

and the optimization problem can be put in the following 
form: 
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The set S is the constraint set defined by the set of equations 
(2, 3, 5, 6) together with the fixed initial and final state 
constraints. Equations (2) is a set of Nx(N+1)+ NuN linear 
inequalities. Equations (3) (discretized) are N+1 nonlinear 
inequalities, and Equations (5) N+1 linear inequalities. The 
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state equations (6) constitute a set of NxN linear equality 
constraints.  
The method and numerical procedure used to solve the 
resulting NLP problem is taken from [14], [15]. The method 
implemented is a sequential equality constrained quadratic 
programming method with an active set technique. The 
active set is estimated using an error criterion for the Kuhn-
Tucker-conditions, which is purely local. If linearly 
dependent gradients of active constraints occur, then the 
code switches to an alternative usage of a fully regularized 
mixed constrained sub-problem using artificial slack 
variables with appropriate weights. It uses a slightly 
modified version of the Pantoja-Mayne update for the 
Hessian of the Lagrangian, variable dual scaling and an 
improved Armijo-type step size algorithm. Bounds on the 
variables are treated in a gradient-projection like fashion.  
The cost function and constraint gradients are computed 
numerically by central difference approximations. The term 

is the gradient of the minimum distance and it can 
only be computed numerically, since an analytic expression 
for d(x

/ kd∂ ∂x

k) is not available. The standard two-sided finite 
difference approximation can be used, where the ith 
component of the estimated gradient vector is given 
by: 

ˆ ( )k kg x
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where δ is a small positive real number and ei denotes a 
vector  with a one in the ith component and zeros elsewhere. 
Notice that the computation of g requires 6 evaluations of 
the minimum distance function for each step k, i.e. a total of 
6N evaluations for each iteration. This is very expensive 
computationally. 
A very important issue with NLP optimization is that any 
solution procedure may converge to a locally optimal 
solution, depending on the initial solution X

ˆ k

0. In order to 
compute good quality initial trajectories and cover many – if 
not all – possible initial trajectories, a randomized 
kinodynamic planner is used. In the proposed two-phase 
approach, a random-tree based randomized planner is used 
to compute feasible control sequences u of length N-1, 
which result in low cost collision-free sequence of length 
N. The best of these sequences is fed into the NLP solver. 

ˆ
x̂

IV. DECREASING COST RANDOMIZED PLANNING 

The probabilistic planner used in this paper has been 
developed based on a biased bidirectional RRT path planner 
[4], which has been extended so that it computes a sequence 
of paths of monotonically decreasing cost. The standard bb-
RRT algorithm grows simultaneously two tree data-
structures, T1, T2. The initial state is inserted in the root-
node of T1 and the goal state in the root-node of T2.  In each 
iteration, each tree Ti is expanded towards a new state ′x . 
This state is either a random feasible state with probability 
p1, or the root of Tj with a goal-bias probability p2. To 
extend tree Ti, the bidirectional RRT finds the state x  
which is closest to x  (nearest-neighbor), chooses a feasible 
control input u , which brings the new state  closest to 

Ti
nn

′
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nn
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′x and inserts it into a new node. In general, the new state is 
computed by integrating for a small time interval a state 
transition equation of the form  (forward 
integration if i=1, else backward). In the same iteration, the 
other tree T
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new nn nnf=x x u

Ti
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j is expanded towards the new state x , in an 
effort to connect the two trees, by computing a new 
state  and inserting it in Tj. At the next 
iteration the indices i, j are swapped and the procedure is 
repeated until the two trees share a common state within 
some tolerance. The one-metric can be used, i.e., for each 
component k of the state vectors || 1 2 ε− <x x Once the 
two trees connect, a collision-free sequence  (and the 
corresponding u ) is computed by constructing for each tree 
a sequence 

x̂
ˆ

ˆ iΤx from the tree-root to the common state, and 
appending the two sequences . If the trees do 
not meet after K

1 2ˆ ˆ ˆ[ ]Τ Τ=   x x x
max iterations, the algorithm terminates with 

an empty path. 

 The biased bidirectional RRT algorithm has been 
extended so that it computes paths of monotonically 
decreasing cost. Each tree node contains the state and 
control vectors x u and is associated with a cost 
function

,k k

( , )k kψ x u which expresses some optimization 
criterion. The cost of a feasible path is the summation of the 
costs of its nodes. The extended planner does not terminate 
as soon as the first feasible solution has been reached. 
Instead, it continues sampling the state space and trying to 
connect the two trees, in order to come up with paths of 
lower-cost. Every time RRT finds a new feasible solution its 
cost is computed and this new solution is accepted only if its 
cost is lower than the best cost so far. Furthermore, all 
nodes in each tree for which the cost of the path that 
connects them to the corresponding tree root-node is greater 
than the new best path-cost can be deleted from the tree, 
since their further expansion cannot lead to paths with lower 
cost. 
RRT is a probabilistically complete planner, i.e. a feasible 
path will be computed with probability which approaches 
one as the computation time grows to infinity. 

 

Fig. 2 Snapshot of trees’ expansion 

In practice, for most real problems a feasible path is reached 
in a finite number of iterations, which largely depends on 
the complexity of problem. The extended planner inherits 
this property. Furthermore, as its execution time grows 
longer, new lower-cost paths keep being discovered. 
However, the probabilistic convergence of the planner to a 



globally optimal path has not been formally established. We 
should also note that the solution of the planner is actually a 
trajectory, since each node carries time information. 

VI. SIMULATION EXPERIMENTS 

 The RRT-based planner and the direct transcription 
algorithm were implemented in C++. The NLP numerical 
procedure used was donlp2-intv-dyn by Prof. Spellucci [14], 
[15] and can be found at http://plato.la.asu.edu/donlp2.html. 
Collision detection and minimum distance computations 
were performed by the PQP Library [16], [17]. 
A number of simulation experiments were performed on a 
Pentium 2.6 GHz single-CPU system, to investigate the 
functionality and performance of the two-phase planner. 
The length of the vehicle’s axis (front-to-rear wheels) was 
set to 2 meters. The steering angle constraint was set 
to . The optimization criterion in all the cases 
was chosen to be the total distance D traveled by the 
vehicle. This can be shown to be 

max| | 45oφ ≤
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A. Kinematic Planning 
The first set of experiments was conducted in the absence of 
obstacles and by using only the kinematic component of the 
vehicle’s state equations (6), i.e., the first three equations. 
The vehicle’s initial state was set to x0 = [0 0 π/2] and its 
goal state xg = [1 0 π/2]. Thus, the vehicle was commanded 
to 1 m sideways, while facing north in both the start and 
goal positions. Figs. 3, 4, 5 and 6 show (with dotted lines) 
four paths of monotonically decreasing cost, as they were 
computed by RRT, which was executed with a maximum of 
20000 nodes in each tree. The paths had 96, 68, 49 and 43 
points, and required 45, 16, 1.1 and 1.5 minutes 
respectively. Since no obstacles were present to constrain 
the solution, the RRT produced paths of very different 
geometries. The solid lines show the corresponding paths as 
they were transformed after optimization by the NLP 
procedure applied on their entire length.  
 

 
Fig. 3 RRT length: 9.49; optimal 
length: 4.07 

 
Fig. 4 RRT length: 6.72; optimal 
length: 3.82 

 

 
Fig. 5 RRT length: 4.76; optimal 
length: 4.02 

 
Fig. 6 RRT length: 4.20; optimal 
length: 3.83 

 
Next, an optimal motion was computed among obstacles. 
The robot’s initial state is x0 = [0 6 π/2] and its goal state is 
xg = [2 10 π/2]. In Fig.7 the best path computed by the first 
phase is shown, together with the corresponding random 
tree. The path’s length is 30.87 meters and its size 310 
points. In Fig. 8 the optimal path is shown after the 
optimization. 
 

 
Fig. 7 Two-dimensional projection of 
a developed random tree and path 

 
Fig. 8 RRT length: 30.87; optimal 
length: 16.9 

 
In a third case study, the initial state of the vehicle was set 
again to x0 = [0 0 π/2], but this time the desired final 
position was xg = [1 0 3π/2]. The RRT planner produced a 
motion which was highly erratic (Fig. 9 dotted line). This 
was due to the fact that no dynamics were involved in its 
generation and the velocity could change and even reverse 
instantly (Fig.10). In this case the NLP optimization was not 
able to smooth the motion (Fig. 9 solid line) and got trapped 
into a local minimum, which was far from the optimal. Such 
undesirable situations can be avoided by the incorporation 
of dynamics in the RRT motion generation and the 
optimization.  
 

 
Fig. 9 RRT length: 7.28; optimal 
length: 6.28 

 
Fig. 10 RRT motion velocity profile 

 
 
 
 



B. Kinodynamic Planning  
In the second set of experiments the full dynamics of the 
vehicle were used. The maximum acceleration and 
deceleration was set to | |  km/h/s, the maximum 
forward velocity to 10 km/h, the maximum backwards 
velocity to -5 km/h, and the maximum wheel turning speed 
to /s. The length of the vehicle’s axis was 3m.   

2a ≤

| | 45oω ≤
 

 
Fig. 11 RRT length: 13.99; optimal 
length: 9.42.  

 
Fig. 12 RRT length: 11.57; optimal 
length: 9.44 

 
Figures 11 and 12 depict the x-y coordinates of two paths 
computed by RRT (dotted lines) and the corresponding 
optimal paths. Forward motion is marked with (F) and 
reverse motion with (R). In Fig.12 RRT produces a “fish-
tail” motion, well known in agriculture for turning at field 
headlands. However, the truly optimal motion turns out 
different. The velocity and steering angle profiles of the 
motions in Fig. 11 - before and after optimization - are 
shown in Fig. 13 and Fig. 14 respectively. Clearly, the 
motion after optimization is not only shorter but much 
smoother. 
 

 
Fig. 13 Linear velocity profiles Fig. 14 Steering angle profiles 

 
VII. CONCLUSIONS AND FUTURE WORK 

 
 The objective of this work was to compute near-optimal 
motions for autonomous robotic vehicles. A two-phase 
approach was adopted, where an RRT-based randomized 
planner produces a sequence of motion trajectories of 
monotonically decreasing cost. In a second phase, the best 
motion computed by RRT is optimized, based on user-
defined criteria. This problem was formulated as an optimal 
control problem and a direct transcription method, together 
with an NLP optimization algorithm were used to solve it 
numerically.  
As a case study, near-optimal paths for a non-holonomic 
car-like robot were computed. The NLP optimization 
always converged to locally optimal solutions. In the case of 
kinematics planning the RRT may produce motions which 
are too erratic. In such cases the optimization may fail to 
improve the motion. However, this problem did not appear 

during the kinodynamic experiments, because the RRT 
motions were much smoother. In the presence of obstacles 
which restricted the shape of the possible paths, the 
randomized planners produced paths of similar “quality”.  
The computation times were big, in the order of a half hour, 
or more. The main reason for this is that the solution 
sequences computed by the RRT planner were long (N 
equals 40 to 300 points). The dimension of the NLP 
problem produced by the transcription method was 5N and 
7N for the kinematic and kinodynamic planning cases 
respectively, i.e., it involves 200 to 2100 variables.  The 
NLP procedure used was based on dense-matrix algebra, 
which means that the Jacobian and Hessian matrices 
computed – and inverted – were huge. 
From these preliminary results it seems that two-phase path 
planners, which combine the search power of randomization 
with numerical optimization for path refinement, can offer a 
practical tool for the solution of motion planning problems. 
Additionally, direct transcription combined with NLP 
solvers can be a useful tool for the optimization of short 
paths (small number of points), or path-segments. For large 
paths though, especially when state constraints are present, 
its computational requirements become prohibitive and 
sparse-algebra optimization tools should be used.  
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