
Modelling and Interfacing Remote Virtual Robots
Zoe Doulgeri, Nikos Zikos and Anastasios Delopoulos

Department of Electrical and Computer Engineering
Aristotle University of Thessaloniki - Greece

Email: doulgeri@eng.auth.gr, nzikos@auth.gr, adelo@eng.auth.gr

Abstract— A formal generic model for simulating the kinematic
behavior of virtual robotic arms is presented in this work.
We introduce an algorithmic procedure, called Virtual Robot
Simulation (VRS) Engine, for updating the trajectory of the
virtual robot when motion commands are presented for execu-
tion. The trajectory itself is modelled as a list consistingof time
intervals where robot joints follow a piecewise polynomialpath.
In addition, the same engine is equipped with the functionality
of responding to position requests at arbitrary time instances.
Constraints imposed by the operation of VRS in real-time mode
are also explored. User interfaces to the virtual robot - including
remote access through data networks - are also modelled and
the effects of possible communication delays are explored.The
combination of the proposed simulation environment with a
synchronized real robot is proposed as a means to overcome
the lack of direct visual feedback in tele-robotic applications.1

Index Terms - Telerobotic, Virtual Reality, Robot Simulation,
Real Time Environment

I. I NTRODUCTION

Robotic technology is young but it is growing at a fast
pace. Robotic systems have already been extensively applied
in factory automation, space exploration, surgery, and military
services and soon there will be robots in every house and
business. Naturally, as in the computer case, the remote
operation and control of robots is going to be a highly desirable
feature. So, eventually and similar to the Internet, a robonet
will be developed where robots are connected to computers,
other robots and humans.

For the time being the technology allows the remote con-
trol of robots referred to as teleoperation. Teleoperationcan
take several forms and can be done via any communication
medium while recently researchers, motivated by the Internet’s
availability, widespread access and low cost, have focusedon
the Internet based teleoperation (see e.g., [1], [2], [3], [4] and
[5]). Stability, transparency and synchronization are among
the main features that are desired in any teleoperation system
despite the time delay introduced by the communication
channel. Ensuring these features specifically in Internet based
teleoperated robots is a challenging task. For example, Oboe
and Fiorini in [5] proposed the design of a robotic controller
that copes with the time delays of the network by modelling
its behavior as time varying random process.

In robot teleoperation there is no predefined path; the
path is generated in real time by the operator based on the
feedback received. The feedback necessary to control a robot
is primarily visual but the transmission of images from the

1This work was partially supported by the Greek Ministry of Education
within EΠEAEK/ΠΥΘAΓOPAΣ − 2 framework.

operational site places heavy demands on the communication
system. As an alternative a local virtual robotic system (VRS)
representing the real one can be frequently updated with a
relatively small amount of information (e.g. joint angles)that
can be transmitted rapidly to enable speedy update of the
VRS, [6]. Likewise the effects of control commands can be
rapidly demonstrated in the VRS than would be possible by the
transmission of images from the distant site. Kuk-Hyun Han
et al in [3] argue that time delays introduced by the Internet
is difficult to measure and/or predict and they adopt the above
idea of a local VRS that is mimicking the motion of its real
counterpart. A so called posture estimation scheme is applied
in order to keep discrepancies between the position of the real
and the virtual robots as low as possible; however in their setup
posture of the controlled robot refers to the[x, y] location and
the direction (θ) of the (mobile) robot. Belousov et al in [4]
are also considering the coupling of a local VRS to the remote
real robot which in this case is a PUMA robotic arm. Three
dimensional VR interfaces are used to (re)present the position
of the virtual arm in real time.

In this work we discuss the modelling of and interfacing
to remote virtual robots and propose the construction of a
simulation engine that is event driven rather than time driven
and thus is able to reduce or even eliminate time delay effects.
The emphasis of our work is on two major aspects of the VRS:
(a) The formal definition of its internal state update procedure
that is driven by the issued motion commands. (b) The modular
construction of interfaces to the VRS. In fact, two very simple
interfacing modules - the Designer and the Observer - are
formally defined; a variety of advanced interfaces including
those operating over the Internet and/or in play-back mode
are constructed using them as building blocks. Both (a) and
(b) are exploited next in teleoperation scenarios.

II. SIMULATION ENGINE

The virtual robot simulation (VRS) is an internet based
application for the kinematic simulation of a specific robot.
The simulation engine (SE) is able to import user motion
commands and export the needed position data which through
a visualization tool can inform the user for the robot position
at every required time instant. The VRS is designed to
accommodate a number of simulation scenarios that depend
on its use that can range from task planning to the virtual
representation of a real robot operation.

The heart of the simulation engine is composed of two
main functions. TheTrajectory Generation Functionand the
Current Position Function.

The Trajectory Generation Functionis a recursive function
that is triggered each time a new motion command is issued
by the VRS robot operator:

τk+1 = f(θ; pk+1, tk+1, vk+1; τk) (1)

θ : is a vector of kinematic and kinetic robot parameters that
are invariant under the simulation procedure. Such parameters
include for example link lengths, maximum joint velocities
and accelerations etc.

(pk+1, tk+1, vk+1) : are the position, time stamp and veloc-
ity parameters of a motion command. In particular,p ∈ ℜ6

is the desired position and orientation of the robot’s end-

effector. The time stamp parameterst =

[

tiss

texec

]

include

the command issue timetiss and the command execution time
texec. The need for such a distinction will hopefully become
clear later on. Last, the velocity parametervk+1 ∈ [0, 1] is
a scalar expressing the percentage of the nominal linear and
angular end effector velocity that is desired for the motion
segment.

τ is the trajectory generated under all the motion commands
that have been issued so far (until step k). The trajectory can
be viewed as a dynamic list of vectors

τk = {s1s2s3...sl} (2)

each describing a trajectory segment. Each motion command
may modify old trajectory segments and add one or more new
trajectory segments of the form:

si =





tsi

tfi

ai



 (3)

wheretsi , tfi is the start and end time of the time interval
the position trajectory segment is valid andai is a vector of
the coefficients of the polynomialpi(t − tsi) characterizing
this trajectory segment. The polynomial’s constant part, rep-
resented by coefficienta0

i , is the robot’s position at the start
time of the trajectory segment. For a continuous trajectory
a0

i+1 = pi(tfi − tsi) . For k=0, s0 contains the initial robot
position that can be set to a default position for e.g. zero joint
variables.

The Current Position Functionis a function returning the
robot position at a specific time instant t and is a function of
the form:

q = g(θ; τk, t) (4)

This function finds the trajectory segment that is valid at the
required time instant, and then calculates the robot’s position
using this segment’s polynomial coefficients. The position
returned to the user is given as a nx1 column matrix which
contains the joint angles of the joints or as a 3x1 vector of the
XYZ tool position and a 3x1 vector of the tool’s Euler angles.

A. Structure of the Simulation Engine

The trajectory designer uses internal speed and acceleration
parameters to implement the trajectory generation function
given a new motion command. The result modifies the content

of theTrajectory Timelineτk = {s1s2s3...sl} that contains all
the trajectory segments in the simulation time horizon. The
kinematics block uses robot kinematic parameters to solve
the robot inverse or forward kinematic problem given the
tool position or the joint angles at a time instant. The input
data are taken from the trajectory timeline. The block returns
to the user the robot joint angles or the Cartesian position
and orientation of its links. The Command analyzer block
accepts user commands and is responsible for checking their
integrity and syntax. It is further responsible for recognizing
the command type and route it appropriately.

Commands can be motion commands, current position
commands or commands that change the internal simulation
parameters. Commands that change the internal simulation
parameters specify the parameter and its new value and return
nothing to the user. Current position commands return the
robot position and the time stamp at which the robot position
was requested. This time stamp is an instance in the robot
simulation timeline. Motion commands specify the desired end
effector position and orientation and/or desired motion type
(motion in straight line or joint interpolated motion, [7])and
do not return anything to the user.

An important characteristic of a motion command in the
proposed VRS is its time stamp. In actual robotic systems
an issued motion command is executed instantly. This may
not however be true for robots controlled over the internet.
Variable delays may be present in this case and consequently
issuing and execution time of motion command may differ
considerably. In the proposed VRS the possibility to define
different issuing and execution times is given through the

motion command time stampt =

[

tiss

texec

]

. Issuing timetiss

is fixed automatically when the user registers the command.
Execution time is the time the motion should be executed. It
is either defined by the user or it is decided on the basis of a
specific policy described in Section II-C.

B. Trajectory Timeline Modification

The trajectory timeline contains the whole robot motion in
the time horizon under study. The way a new motion command
affects the contents of the trajectory timeline depends on the
relation of the execution time with respect to the end times of
the trajectory segments.

Let the motion command be:(pk+1, tk+1, vk+1) . The
motion command execution timetexec extracted fromtk+1

is compared to the end times of the scheduled segments. Then
the trajectory is modified with respect to all these trajectory
segmentssi with end time greater than the execution time
texec < tfi . If the execution time is greater than the end time
of the last segmenttfl ≤ texec then the execution time is used
as the start time of the first new trajectory segment and new
trajectory segments are in this case appended on the trajectory
list. In the general case, sayn scheduled trajectory segments
have end times greater than the command’s execution time
i.e.:

texec < tfi i = m, ..., m + n (5)

wherem denotes the order of the first segment affected by
the new command. After the insertion of the new trajectory

s

1

s
2

s

3

s'

1

s'

2

s'
3

s
'
4

s'
5

t
exec

p
o

s
i

t
i
o

n

time

p
k

p

k+2

p

k+1

Fig. 1. Trajectory modification.

segments, that replace and expand some old ones the rest of
the segments are just time shifted without any change in their
corresponding polynomial coefficients. This means that a new
position command modifies the trajectory only locally.

Let us for example assume that the trajectory used be-
tween two position values (pk, pk+1) is a linear trajectory
with parabolic blends, [8], [9] like the one illustrated by the
dashed line in Figure 1. Such a trajectory corresponds to three
trajectory segments:

τk = {. . . s1 s2 s3}

=







. . .

ts1 ts2 ts3
tf1 tf2 tf3

a1 a2 a3







(6)

with ts2 ≡ tf1 and ts3 ≡ tf2.
Let us also assume that the execution timetexec for moving

to the new positionpk+2 falls within the time interval of the
linear trajectory segment, i.e.ts2 < texec ≤ tf2 . Then, the
new trajectory time line is

τk+1 = {. . . s1 s′2 s′3 s′4 s′5}

= { . . . s1







t′s2 t′s3 t′s4 t′s5
t′f2 t′f3 t′f4 t′f5

a′

2 a′

3 a′

4 a′

5







}

with t′s2 ≡ ts2.
Trajectory segments′3 smoothly changes the end effector’s

velocity in order to connect the two straight line trajectories
s2 ands′4 [8]. The new trajectory corresponds to the solid line
in Figure 1.

C. Real-time Mode

Up to this point the trajectory,τk, is considered as aligned
to a time-line with an arbitrary startt = 0. In our view this
is a powerful abstraction that adds flexibility whenever the
proposed simulation engine is employed in experimentation,
planning or teaching environments. On the other hand, when
the same simulator is to be considered as an emulator of a real
robotic system, e.g., when it is used as a synchronized copy
of an actual robot, its time-line should be aligned to some

real-time clock. As a consequence the following twocausality
restrictionsapply:

1) The time-stamps of all motion commands should satisfy
the inequalitytexec ≥ tiss

2) Motion commands(pk+1, tk+1, vk+1) that, according to
the analysis of Section II-B, would result in modifica-
tions of the trajectory at time points preceding the real
clock timetc, should be aborted or postponed (depend-
ing on the adopted policy). Postponing a command is
equivalent to altering itstexec to a value greater or equal
to thetf of the current interval. (Note that the procedure
of Section II-B will apply for the computation of the new
trajectory for the “postponed”texec).

However, the causality assumption does not impose any re-
striction to the time parametert of Current Position Function
q = g(θ; τk, t), other that it is now referring to time values
corresponding to the real-timeline.

III. I NTERFACES

Users may communicate to the VRS by means of two
elementary interfacing modules, namely theDesignerand the
Observer. These two modules essentially correspond to, and
are able to invoke, thetrajectory generationand thecurrent
position functions respectively.

The designer module is responsible to modify virtual
robot’s trajectory by issuing motion commands of the form
(pk+1, tk+1, vk+1). In practice, these commands are expressed
in a high level language (in our experiments we adopted a
VAL-II like syntax) that have though an one-to-one mapping to
(pk+1, tk+1, vk+1) triplets. Although, in general, the execution
time-stamps withintk+1 may refer to any time instance,
certain causality restrictions apply when the module operates
in real-time mode (ref Section II-C).

The observer module is responsible to acquire virtual robot’s
position by issuing commands corresponding to invocation of
current position functionat any arbitrary time instancet. In
practice, a high level syntax is employed for expressing these
commands.

The links of the simulation engine to the two elementary
interfaces is shown in Figure 2.

The previous elementary modules are the building blocks
for user interfaces of higher and differentiated functionality.
Of particular interest are theSupervisorand theViewer.

The supervisor is the combination of the designer and
observer modules. It uses designer’s capabilities for specifying
robot’s trajectory and utilizes observer for collecting feedback
from the virtual robot.

On the other hand the viewer is a special instantiation of
an observer that is scheduled to repetitively acquire position
information at user defined time intervals.

In terms of implementation both the supervisor and the
viewer:

1) May act in a client-server manner. This means that they
can split to a server submodule that resides close to
the VRS (as a process running on the same machine)
and another client submodule that runs anywhere in
the Internet and acts as the front-end interface to the

Virtual Robot Simulation Engine

Current Position

Computation

),;(tgq k

Trajectory Modification

Procedure

);,,;(1111 kkkkk vtpf

trajectory storage

,...},,{... 21 iiik sss

DesignerObserver

),,(111 kkk vtptq

k

1k

Fig. 2. The proposed architecture including the two types ofelementary
interface modules (Designer and Observer).

user. It is worth noticing that more than one viewers
may operate simultaneously either by sharing the same
server submodule or by spawning more such servlets.
In particular, the server part of the viewer operates as
a streaming server that delivers position information to
the user in a fashion similar to video frames.

2) May be graphics enabled in the sense that position
information and/or position commands (the latter for the
case of supervisor only) are represented within some
visualization environment (e.g., via VRML.)

It is also interesting to point out that in accordance to the
proposed structure of the trajectoryτk, viewers can be enabled
with play-back capabilities (play, pause, rewind, etc.)

The architecture of the Viewers and the Supervisor is
depicted in Figure 3.

IV. OPERATION OVER THENETWORK

The client-server implementation of the supervisors and the
viewers allows for remote interfacing to the VRS engine over
any type of data networks (including the Internet).

A number of network protocoland information coding
related issues should be resolved for achieving a stable im-
plementation of such remote teleoperation. For the shake of
brevity we skip this discussion in the context of this paper
and concentrate only to the most important consequence of
introducing the net in the loop:delays.

A trajectory modification command issued at time pointtiss

reaches the VRS only afterDf seconds. Similarly the outcome
of current position functionq = g() is delivered to the end
user Db seconds after the actual evaluation of the function
(ref. Figure 4).

These delays are not important when the simulation engine
operates in anon real-time mode; unfortunately, though, they

Supervisor's server component

Viewer's server component

Virtual Robot Simulation Engine

DesignerObserver

),,(111 kkk vtptq

Supervisor's client

component
Viewers' client components

Network Boarder

position information stream motion commands

Fig. 3. Viewer and Supervisor Interfaces and the corresponding information
flow. The Supervisor encapsulates the server side componentof a viewer.
Multiple Client-side Viewer components share the same server component. No
time indication is being sent to the server, functiong is periodically executed
at a pre-agreed rate.

may have serious consequences when a real time operation
is required with the inherent constraints presented in Section
II-C.

In particular, due to the forward delayDf the first restriction
of Section II-C should be transformed totexec ≥ tiss + Df

and the second should assumetc = tiss + Df .

A. Coping with the Delays

From a user point of view the forward (Df) and backward
(Db) delays have the following annoying effects:

Motion commands should contain execution time-stamps
(texec) referring to the future otherwise will be ignored or
postponed. This means thatSupervisors (Designer component)
should act pro-actively.

Position parameters received by both theSupervisors (Ob-
server component)and theViewers (Observers)contain lagged
(by Db) information, i.e., they do not perceive the current robot
position.

In the sequel we explore some methods to alleviate these
effects.

The core idea is to use different “real-time” clocks for
the server and for the client sides. The corresponding real-
timelines will be synchronous but mutually shifted by a
constant offsetD. Under this assumption iftu andte represent
time index for user’s and simulation engine clocks respectively,
we assume thatte = tu + D.

t
0
=0

t
0
=0

t
iss

SE’s timeline

Client’s timeline

t
0
=0

t

0

=0

SE’s timeline

Client’s timeline

a)

b)

t
iss
 t
iss
 + D

f

t

t
 t
 + D

b

Fig. 4. The effect of (a) forward and (b) backward network delays.

t

0

=0

t
0
=0
 t
iss

SE’s timeline

Client’s timeline

t
iss
 t

c

t

c

 + D

f

 +D

b

D

f

Fig. 5. The effect of shifting VRS time-line (te) by a negativeoffset equal
to Df w.r.t the time line of the users (tu)

SettingD = −Df a motion command withtiss,u reaches
the VRS attiss,u + Df i.e., when its local current time is
tec = (tiss,u + Df) − Df = tiss,u (ref. Figure 5. Interpreting
execution time-stampstexec using VRS local clock we cancel
out the annoying effects of forward delays on the evaluationof
the causality constraints. Essentially, this approach forces the
VRS to operate in a delayed (byDf) fashion w.r.t user’s clock.
Consequently, Viewers/Observers sharing the same clock with
the Designers (like in the case of Supervisors) will perceive
a total delay ofDf + Db. This effect can be obviated if
the server side of these modules is scheduled to “transmit”
position information referring to future instances. In particular,
at VRS local timetc, executeq = g(θ; τk, tc + Df + Db) and
transmit theq that is essentially a predicted value of robot’s
position. Of course this “trick” will result to invalid position
information whenever prediction fails, i.e., when a motion
command executed betweentc and tc + Df + Db happens
to alter the trajectory.

On the other hand, settingD = Db (ref. Figure 6) the
result of q = g(θ; τk, te) evaluated and instantly posted at
VRS local timete will be delivered to the user atte + Db

which corresponds to user’s local timetu = te − Db = te.
Consequently viewers have theillusion that they obtain instant
knowledge of robot’s position.

V. M IXING REAL AND V IRTUAL ROBOTS

As already mentioned is section II-C the proposed model
of virtual robot can be used as a useful stand-alone tool
for teaching (including teleeducation in robotics), planning
and experimentation (by allowing low cost simulation of real
plants).

t
0
=0

t
0
=0

t
iss

t

c

SE’s timeline

Client’s timeline

t

c

t

iss

 + D

f

 +D

b

Fig. 6. The effect of shifting VRS time-line (te) by a positiveoffset equal
to Db w.r.t the time line of the users (tu)

However, its most interesting use is when it acts as a
representative of a real robot whose behavior is emulated by
the virtual counterpart. In fact, settling a virtual copy ofa
real robot may yield a powerful visual feedback interface in
telerobotic applications. Consider for example the scenario of
steering a robotic arm residing in a remote location over a data
channel with limited bandwidth and communication delays.
Position commands of the form(pk+1, tk+1, vk+1) are used
for steering while functionsf andg of the form in equations
(1) and (4) represent the built-in kinematic behavior of thearm.
Remote robot operator has not a direct visual feedback and
conventionally this is substituted by installing a set of cameras
on or around the robotic arm that capture and stream views
of the robot over the available communication channel. Apart
of the introduced delays and the resulting communication
overload this approach does not allow a complete 3D view
of the real robot.

A virtual emulator of the actual robot that (a) behaves in
accordance to the very same functionsf and g, (b) receives
the same set of position commands, (c) is aware of the delays
Df andDb characterizing the communication to the real robot,
(d) outputs its position parameters to a virtual reality visual
interface and (e)is conveniently installed very close to the
operator yields a high quality feedback to its operator. The
latter is in our terminology acting as aSupervisor.

VI. I MPLEMENTATION

A. Free design options

The methodology presented in Sections II through V pro-
vides a framework for implementing a virtual robot and
various forms of interfaces that allow for issuing steering
commands and acquiring real-time information regarding its
position. In addition we have sketched the interesting combina-
tion of a virtual and a synchronized real robot. This framework
is generic in the sense that it is actually neutral w.r.t.

1) the geometry of the robot(s)
2) the adopted kinematic model describing the detailed

forward and inverse kinematic solutions used to describe
the trajectory of the robots (both virtual and real) (i.e.,
the inner structure of functionsf andg)

3) the syntax of the high level language used for posting
commands and receiving position information

4) the exact format of the exchanged data (position param-
eters, time stamps)

5) the (software development) platform and the (graphical)
user interfaces used to implement the VRS and the
client-server components of the interfacing modules

Fig. 7. The Supervisor interface of the virtual PUMA robot: The left
panel is used to issue position commands (that will be forwarded to the
trajectory designer module) and the right panel provides live visualization
of the incoming position information stream.

6) the network protocols employed to support data inter-
change

Purposely following this abstraction we tried to decompose
modelling from implementation issues.

B. Implementation choices

In our experiments we adopted certain options and made
particular implementation choices that are described in the
sequel.

The kinematic model adopted for the construction of func-
tions f and g is fully compatible to a PUMA robotic arm
with six rotary joints available in the Robotics Lab of our
department. For compatibility reasons VAL-II has been used
as a reference model for the high level syntax of motion
commands and position specification.

The real time implementation of our VRS is based on
Matlab v.6.5 release 13 and a number of forward and inverse
kinematics routines emulating the kinematic model of PUMA.

The server side components of Viewers and Supervisors
were developed in Java (version JDK 1.4.2 from Sun Mi-
crosystems). These components are essentially translating
VAL-II position commands into Matlab calls that modify the
trajectory structure as described in Section II-B. The client side
interfaces are graphics enabled java applets that use VRML97
and Java3D to visualize the position of the virtual robot (ref.
Figure 7).

Data exchange, i.e., the communication between clients and
servers is based on TCP/IP.

Viewers, in particular, comprise of a broadcast server mod-
ule shared by more than one clients. Each broadcast server
transmits robot’s position information periodically acquired
via successive invocations of functiong. More than one such
servers can be spawned simultaneously delivering position
“frames” at different rates to Viewer Clients that connect to
them. Frame rates of up to50 frames per second have been
tested without serious overload of the Matlab based VRS.

VII. C ONCLUSION

A generic model for simulating the kinematic behavior of
robotic arms was presented in this work. The structure of a
trajectory list consisting of time intervals where robot joints
follow a piecewise polynomial path was used to represent
robots time varying state. A formal method for updating this
structure when time-stampted motion commands are issued
was proposed. The corresponding algorithm was considered
as the computational core of the proposed Virtual Robot
Simulation (VRS) Engine. In addition, the same engine is
equipped with the functionality of responding to position
requests at arbitrary time instances. Constraints imposedby
the operation of VRS in real-time mode were explored. Two
elementary interfaces, namely the (trajectory) designer and the
observer were presented and subsequently used to build user
interfaces of higher level, i.e., the supervisor and the viewer.
It was also described how the latter can be implemented in
order to allow communication over a data network suffering
from delays (such as the Internet). The use of the proposed
simulation environment in conjunction with a real robot was
proposed as a means to overcome the lack of direct visual
feedback in teleoperation applications.

A brief report on our implementation of the proposed
virtual robot modelling and the corresponding interfaces was
presented after all.

The authors are currently exploring the many open issues
not covered within the proposed scheme. Among them, the
most interesting ones include (a) the handling of delay jitter
(i.e., the time varying nature of network delays), (b) the effi-
cient encoding of transmitted position information by consider-
ing tools like MPEG-4, (c) the extension of motion commands
to continuous time steering mode (e.g., by dragging robot’s
tool), (d) the improvement of user interfaces by adding higher
interactivity between the supervising user and the robot and
(e) the improvement of the synchronization between the virtual
and the real robot (by adding a direct mutual communication
link).

REFERENCES

[1] K. Taylor and B. Dalton. Internet robots: A new robotics niche. IEEE
Robotics and Automation Magazine, 7(1), January 2000.

[2] H. Shen R. C. Luo, K. L. Su and K. H. Tsai. Networked intelligent robots
through the Internet: Issues and opportunities.Proceedings of the IEEE,
91(3):371–382, 2003.

[3] Kuk-Hyun Han, Sinn Kim, Yong-Jae Kim, and Jong-Hwan Kim.Internet
control architecture for Internet-based personal robot.Autonomous
Robots, 10(2):135–147, 2001.

[4] I. Belousov, G. Clapworthy, and R. Chellali. Virtual reality tools for
Internet robotics. InIEEE Intl. Conf. on Robotics and Automation
ICRA’2001, pages 1878–1883, Seoul, Korea, May 2001.

[5] R. Oboe and P. Fiorini. A design and control environment for Internet-
based telerobotics.Intl. J. of Robotics Research, 17(4):433–449, 1998.

[6] J. Tan and G. L. Clapworthy. Virtual environments for Internet based
robots- i: Modeling a dynamic environment.Proceedings of the IEEE,
91(3):383–388, 2003.

[7] K. Fu, R. Gonzales, and C. Lee.Robotics. McGraw-Hill International
Editions, 2nd edition, 1988.

[8] T. Yoshikawa.Foundations of robotics. Corona Publishing Co.Ltd, 1990.
[9] J. Craig. Robotics Mechanics and Control. Addison-Wesley Publishing

Co., 1986.

