Modelling and Interfacing Remote Virtual Robots

Zoe Doulgeri, Nikos Zikos and Anastasios Delopoulos
Department of Electrical and Computer Engineering
Aristotle University of Thessaloniki - Greece
Email: doulgeri@eng.auth.gr, nzikos@auth.gr, adelo@snb.gr

Abstract— A formal generic model for simulating the kinematic operational site places heavy demands on the communication
behavior of virtual robotic arms is presented in this work. system. As an alternative a local virtual robotic system $yR
We introduce an algorithmic procedure, called Virtual Robot representing the real one can be frequently updated with a

Simulation (VRS) Engine, for updating the trajectory of the . . . e
virtual robot when motion commands are presented for execu- relatively small amount of information (e.g. joint anglesjt

tion. The trajectory itself is modelled as a list consistingof ime ~ €an be transmitted rapidly to enable speedy update of the
intervals where robot joints follow a piecewise polynomialpath. VRS, [6]. Likewise the effects of control commands can be
In addition, the same engine is equipped with the functionaly rapidly demonstrated in the VRS than would be possible by the
of responding to position requests at arbitrary time instarces. yansmission of images from the distant site. Kuk-Hyun Han
Constraints imposed by the operation of VRS in real-time moeé . . .
are also explored. User interfaces to the virtual robot - intuding _e‘t a_l _m [3] argue that time delays_ introduced by the Internet
remote access through data networks - are also modelled and i difficult to measure and/or predict and they adopt the abov
the effects of possible communication delays are explored@he idea of a local VRS that is mimicking the motion of its real
combination of the proposed simulation environment with a counterpart. A so called posture estimation scheme is egpli
synchronized real robot is proposed as a means to overcomejn order to keep discrepancies between the position of thie re
the lack of direct visual feedback in tele-robotic applicatons?! . o .)

and the virtual robots as low as possible; however in theise

Index Terms - Telerobotic, Virtual Reality, Robot Simulation, Posture of the controlled robot refers to the y] location and

Real Time Environment the direction §) of the (mobile) robot. Belousov et al in [4]
are also considering the coupling of a local VRS to the remote
real robot which in this case is a PUMA robotic arm. Three

|. INTRODUCTION . . . N
_ . o . dimensional VR interfaces are used to (re)present theiposit
Robotic technology is young but it is growing at a fast the virtual arm in real time.

pace. Robotic sys.tems have already. been extensivgly qlpplieln this work we discuss the modelling of and interfacing
in factory automation, space exploration, surgery, andtan to, remote virtual robots and propose the construction of a

ts)er_/ices and soo|r|1 there_willhbe robots in every r;]ouse ag'ﬁlnulation engine that is event driven rather than timeetriv
USINESS. Naturally, as in t e computer case, the remaig, 1, s is able to reduce or even eliminate time delay sffect
operation and control of robots is going to be a highly dé#ra 1o ophasis of our work is on two major aspects of the VRS:
fe.ﬁtlére. dSo, Iever;tuarl]ly andbS|m|Iar to the Inte(;net, a reto a) The formal definition of its internal state update praged
Wlh € beve opz hW ere robots are connected to COMPUlElz; s griven by the issued motion commands. (b) The modular
other ro ot_s and humans. construction of interfaces to the VRS. In fact, two very sienp
For the time being the technology a!lows the remo'Fe COrﬁterfacing modules - the Designer and the Observer - are
trol of robots referred to as teleoperation. Teleoperatian formally defined; a variety of advanced interfaces inclgdin

tak(ej_severﬁ_ll forms alnd can blf done via ar:jybcorlrn"nlumcatmlgse operating over the Internet and/or in play-back mode
medium w |e_recentyresearc ers, motivated by the leean are constructed using them as building blocks. Both (a) and
availability, widespread access and low cost, have focosed (b) are exploited next in teleoperation scenarios

the Internet based teleoperation (see e.g., [1], [2], Elahd
[5]). Stability, transparency and synchronization are ago
the main features that are desired in any teleoperatioemsyst [I. SIMULATION ENGINE

despite the time delay introduced by the communicationrhe yirtyal robot simulation (VRS) is an internet based

channel. Ensuring these features specifically in Interased 5 pjication for the kinematic simulation of a specific rabot

teleoperated robots is a challenging task. For exampleeObfhe simulation engine (SE) is able to import user motion

and Fiorini in [5] proposed the design of a robotic contmolle;qmmands and export the needed position data which through

that copes with the time delays of the network by modelling \isyalization tool can inform the user for the robot pasiti

its behavior as time varying random process. at every required time instant. The VRS is designed to
In robot teleoperation there is no predefined path; g ommodate a number of simulation scenarios that depend

path is generated in real time by the operator based on f¢ s ,se that can range from task planning to the virtual
feedback received. The feedback necessary to control & ro%resentation of a real robot operation.

is primarily visual but the transmission of images from the The heart of the simulation engine is composed of two

1This work was partially supported by the Greek Ministry ofugdtion main funCt'Qf}S- TheTra_JeCtory Generation Functioand the
within EIIEAEK/IIYOATOPAS. — 2 framework. Current Position Function

The Trajectory Generation Functiors a recursive function of the Trajectory Timeliner;, = {s1s2s3...s;} that contains all
that is triggered each time a new motion command is issutt trajectory segments in the simulation time horizon. The

by the VRS robot operator: kinematics block uses robot kinematic parameters to solve
. . the robot inverse or forward kinematic problem given the
Tiat = f(05 Dbttt Vi1 7) () tool position or the joint angles at a time instant. The input

6 : is a vector of kinematic and kinetic robot parameters thé@ta are taken from the trajectory timeline. The block mesur

are invariant under the simulation procedure. Such paemmett© the user the robot joint angles or the Cartesian position

include for example link lengths, maximum joint velocitiegnd orientation of its links. The Command analyzer block

and accelerations etc. accepts user commands and is responsible for checking their
(Pk+1, tkt1, Vi41) - are the position, time stamp and velocintegrity and syntax. It is furth_er respon_sible for recammg

ity parameters of a motion command. In particufare ®¢ the command type and route it appropriately.

is the desired position and orientation of the robot's end- Commands can be motion commands, current position
) iss . commands or commands that change the internal simulation

effector. The time stamp parameters= | ... | include paameters. Commands that change the internal simulation

the command issue timé** and the command execution timeParameters specify the parameter and its new value andhretur

terec. The need for such a distinction will hopefully becoméothing to the user. Current position commands return the

clear later on. Last, the velocity parametgr,; € [0,1] is robot position and the time stamp at which the robot position

a scalar expressing the percentage of the nominal linear a@s requested. This time stamp is an instance in the robot

angular end effector velocity that is desired for the motiogimulation timeline. Motion commands specify the desined e

segment. effector position and orientation and/or desired motiopety

7 is the trajectory generated under all the motion commangfgotion in straight line or joint interpolated motion, [/dnd
that have been issued so far (until step k). The trajectony célo not return anything to the user.

be viewed as a dynamic list of vectors An important characteristic of a motion command in the
proposed VRS is its time stamp. In actual robotic systems
T = {s15283...51} (2) an issued motion command is executed instantly. This may

each describing a trajectory segment. Each motion commzﬂﬂ} however be true for robots controlled over the internet.

may modify old trajectory segments and add one or more n ”‘T’lble de;jlays maty bet_prese?t N tt.h's case anddconse((qjg;ntly
trajectory segments of the form: issuing and execution time of motion command may differ

considerably. In the proposed VRS the possibility to define
tei different issuing and execution times is given through the

158

si= | tfi (3) motion command time stamp= . Issuing timet?**

f/e.’l)@c

is fixed automatically when the user registers the command.
wheret; , ty; is the start and end time of the time intervaExecution time is the time the motion should be executed. It

the position trajectory segment is valid aadis a vector of is either defined by the user or it is decided on the basis of a

the coefficients of the polynomial;(t — ¢,;) characterizing specific policy described in Section II-C.

this trajectory segment. The polynomial’s constant pa-r

resented by coefficient?, is the robot's position at the startB. Trajectory Timeline Modification

time of the trajectory segment. For a continuous trajectory The trajectory timeline contains the whole robot motion in

ad = pi(tyi — tsi) . For k=0, s, contains the initial robot the time horizon under study. The way a new motion command

position that can be set to a default position for e.g. zeirtt jo affects the contents of the trajectory timeline dependshen t

variables. relation of the execution time with respect to the end times o
The Current Position Functioris a function returning the the trajectory segments.

robot position at a specific time instant t and is a function of Let the motion command be(pyi1,tk+1,vk+1) - The

the form: motion command execution timg®<¢ extracted froméy

q=g(0; 7k, 1) (4) is compared to the end times of the scheduled segments. Then

]) i))] the trajectory is modified with respect to all these trajgcto
This function finds the trajectory segment that is valid a ﬂkegments_szi with end time greater than the execution time

required_time instant, and then _calculat(_—:ts_ the robot’stm:_si_ tevec < ¢4, . If the execution time is greater than the end time
using this segment’s_ po_IynomlaI coefficients. The POSItiogf the |ast segmentt; < =< then the execution time is used
returned to the user is given as a nx1 column matrix Whicly the start time of the first new trajectory segment and new
contains the joint angles of the joints or as a 3x1 vector ef ”ﬂrajectory segments are in this case appended on the tgject
XYZ tool position and a 3x1 vector of the tool's Euler anglesis; |n the general case, sayscheduled trajectory segments

have end times greater than the command’s execution time
A. Structure of the Simulation Engine i.e.:

exec . s
The trajectory designer uses internal speed and accelerati <ty i=m,.,m4n ®)

parameters to implement the trajectory generation functiswhere m denotes the order of the first segment affected by
given a new motion command. The result modifies the contehe new command. After the insertion of the new trajectory

real-time clock. As a consequence the following twausality
restrictionsapply:
1) The time-stamps of all motion commands should satisfy
S AN the ?nequalitytemc > tiss .
‘ 2) Motion command$py.+1, tk+1,vk+1) that, according to
o S S5 the analysis of Section II-B, would result in modifica-
P T tions of the trajectory at time points preceding the real
clock timet., should be aborted or postponed (depend-
ing on the adopted policy). Postponing a command is
equivalent to altering itg“*“ to a value greater or equal
to thet; of the current interval. (Note that the procedure
of Section II-B will apply for the computation of the new
time trajectory for the “postponedi®<¢).
tere However, the causality assumption does not impose any re-
striction to the time parameterof Current Position Function
Fig. 1. Trajectory modification. q = g(#;7,1), other that it is now referring to time values
corresponding to the real-timeline.

position
\

segments, that replace and expand some old ones the rest of
the segments are just time shifted without any change im thei
corresponding polynomial coefficients. This means thatva ne Users may communicate to the VRS by means of two
position command modifies the trajectory only locally. elementary interfacing modules, namely esignerand the

Let us for example assume that the trajectory used Hebserver These two modules essentially correspond to, and
tween two position valuesp(, px11) is a linear trajectory are able to invoke, thérajectory generatiorand thecurrent
with parabolic blends, [8], [9] like the one illustrated byet Ppositionfunctions respectively.
dashed line in Figure 1. Such a trajectory corresponds ðr The designer module is responsible to modify virtual

IIl. I NTERFACES

trajectory segments: robot’s trajectory by issuing motion commands of the form
(Pk+1, tk+1,vk+1)- IN practice, these commands are expressed
e = {...s1s253} in a high level language (in our experiments we adopted a
ts1 ls2 ts3 VAL-II like syntax) that have though an one-to-one mapping t
= .t tpa tys (6) (Pry1,trr1,vry1) triplets. Although, in general, the execution
a1 a2 as time-stamps withint,,; may refer to any time instance,
With £ = t;1 andt,s = t o, certain causality restrictions apply when the module aesra

Let us also assume that the execution tirfféc for moving 1N réal-ime mode (ref Section II-C). o
to the new position,..» falls within the time interval of the The observer module is responsible to acquire virtual rebot

linear trajectory segment, i.¢,» < t°*° < ¢, . Then, the position by .is_suing co_mmands correspon_ding_to invocation o
new trajectory time line is current position functiorat any arbitrary time instance In
practice, a high level syntax is employed for expressingeéhe

Tht1 = {...85185855) 55} commands.
ty the thy ths The links of the simulation engine to the two elementary
= {...s tho thy thy ths o} interfaces is shown in Figure 2. N
ay a's ay af The previous elementary modules are the building blocks
o for user interfaces of higher and differentiated functlipa
with ¢, = 0.

: , ,Of particular interest are thBupervisorand theViewer.
Trajectory segment; smoothly changes the end effector’s

velocity in order to connect the two straight line trajecer
s2 ands) [8]. The new trajectory corresponds to the solid lin
in Figure 1.

The supervisor is the combination of the designer and
observer modules. It uses designer’s capabilities forigpeg
Fobot's trajectory and utilizes observer for collectingdback
from the virtual robot.
On the other hand the viewer is a special instantiation of
C. Real-time Mode an observer that is scheduled to repetitively acquire joosit
Up to this point the trajectorys, is considered as alignedinformation at user defined time intervals.
to a time-line with an arbitrary statt= 0. In our view this ~ In terms of implementation both the supervisor and the
is a powerful abstraction that adds flexibility whenever the@ewer:
proposed simulation engine is employed in experimentation 1) May act in a client-server manner. This means that they
planning or teaching environments. On the other hand, when can split to a server submodule that resides close to
the same simulator is to be considered as an emulator of areal the VRS (as a process running on the same machine)
robotic system, e.g., when it is used as a synchronized copy and another client submodule that runs anywhere in
of an actual robot, its time-line should be aligned to some the Internet and acts as the front-end interface to the

Virtual Robot Simulation Engine

Virtual Robot Simulation Engine
trajectory storage

- }

T = {"'SIJSHHSHZ""I
7, | ? *
I g

Tin i (Praslias Vi)

! ' |

" . I y

Current Position Trajectory Modification)

Computation Procedure

q=2g(6;7,1) T = F O Dpis s Vi3 T1) Observer Designer

! I Viewer's server component
4 (Prastin>Viar)
* Supervisor's server component
Network Boarder
Observer Designer position information stream motion commands

1
Y
Fig. 2. The proposed architecture including the two typeslementary

interface modules (Designer and Observer). Viewers' client components Supervisor's client
component

user. It is worth noticing that more than one viewers
may operate simultaneously either by sharing the same

server submodule or by Spawning more such servlefféﬂ- 3. Viewer and Supervisor Interfaces and the correspgnidformation
low. The Supervisor encapsulates the server side compmfeatviewer.

In partlcu_lar, the server part of the _/!ewe_r opera?es RRultiple Client-side Viewer components share the sameeserwmponent. No
a streaming server that delivers position information téme indication is being sent to the server, functipis periodically executed

the user in a fashion similar to video frames. at a pre-agreed rate.
2) May be graphics enabled in the sense that position

information and/or position commands (the latter for the

case of supervisor only) are represented within so

visualization environment (e.g., via VRML.)

. I-C.
It is also interesting to point out that in accordance to the |, naricular, due to the forward deldy; the first restriction
proposed structure of the trajectoty, viewers can be enabled ot gaction 11-C should be transformed t6ec > ¢iss + Dy

with play-back capabilities (play, pause, rewind, etc.) and the second should assume= t¥** + D;.
The architecture of the Viewers and the Supervisor is
depicted in Figure 3.

ay have serious consequences when a real time operation
IS required with the inherent constraints presented ini@ect

A. Coping with the Delays

From a user point of view the forward);) and backward
(Dy) delays have the following annoying effects:

The client-server implementation of the supervisors ard th Motion commands should contain execution time-stamps
viewers allows for remote interfacing to the VRS engine oveferec) referring to the future otherwise will be ignored or
any type of data networks (including the Internet). postponed. This means thatipervisors (Designer component)

A number of network protocoland information coding should act pro-actively.
related issues should be resolved for achieving a stable im{Position parameters received by both Bepervisors (Ob-
plementation of such remote teleoperation. For the shakesgfrver componengnd theViewers (Observergjontain lagged
brevity we skip this discussion in the context of this papgby D,) information, i.e., they do not perceive the current robot
and concentrate only to the most important consequencepafition.
introducing the net in the loomelays In the sequel we explore some methods to alleviate these

A trajectory modification command issued at time paifit effects.
reaches the VRS only afté?; seconds. Similarly the outcome The core idea is to use different “real-time” clocks for
of current position functiony = ¢() is delivered to the end the server and for the client sides. The corresponding real-
user D, seconds after the actual evaluation of the functicimelines will be synchronous but mutually shifted by a
(ref. Figure 4). constant offseD. Under this assumption if, andt. represent

These delays are not important when the simulation engitime index for user’s and simulation engine clocks respebtj
operates in anonreal-time mode; unfortunately, though, theyve assume that® = ¢t* + D.

IV. OPERATION OVER THENETWORK

a) I t =0 iss {5+ D, SE's timeline_ N\, t=0 . +D +D, t, SE’s theIine
| >

.t =0 Client's timeline
t,=0 Client's timelin N\ >
) e= . tiss| t

tiss

Fig. 6. The effect of shifting VRS time-line{) by a positive offset equal

by |4=0 t SE's timeline._ to Dy w.rt the time line of the userg'()

i S

i

I . : . : .

i However, its most interesting use is when it acts as a

¢ =0 Clionts timeline representative of a real robot whose behavior is emulated by

L i i i . . .

; : ——s > the virtual counterpart. In fact, settling a virtual copy @f

' ’ real robot may vyield a powerful visual feedback interface in
Fig. 4. The effect of (a) forward and (b) backward networkagl telerobotic applications. Consider for example the sdenair

steering a robotic arm residing in a remote location overta da

’ s channel with limited bandwidth and communication delays.

— Dt t. SE'’s timeline .
T =0 » Position commands of the forfpy41, tkt1,vk+1) are used
g ’ for steering while functiong’ and g of the form in equations
;7 ' N (1) and (4) represent the built-in kinematic behavior ofahma.
. === Remote robot operator has not a direct visual feedback and

7" 1,=0 tiss t,+D,+D,
‘ conventionally this is substituted by installing a set ahesas

Fig. 5. The effect of shifting VRS time-linet{) by a negativeoffset equal on or around the rObOtlc_ arm that capt_ure_ and stream views

to D w.r.t the time line of the userg) of the robot over the available communication channel. Apar
of the introduced delays and the resulting communication
overload this approach does not allow a complete 3D view

Setting D = —D; a motion command with?s>* reaches Of the real robot.

the VRS att™*>* + D; i.e., when its local current time is A virtual emulator of the actual robot that (a) behaves in

te = (5% 4 Dy) — Dy = t's% (ref. Figure 5. Interpreting accordance to the very same functioh@nd g, (b) receives

execution time-stamps®e© using VRS local clock we cancel the same set of position commands, (c) is aware of the delays

out the annoying effects of forward delays on the evaluation Dy and D, characterizing the communication to the real robot,

the causality constraints. Essentially, this approacbefethe (d) outputs its position parameters to a virtual realityuais

VRS to operate in a delayed (1Y) fashion w.r.t user’s clock. interface and (e)is conveniently installed very close te th

Consequently, Viewers/Observers sharing the same claitk weperator yields a high quality feedback to its operator. The

the Designers (like in the case of Supervisors) will pereeivatter is in our terminology acting as Supervisor

a total delay ofD; + D,. This effect can be obviated if

the server side of these modules is scheduled to “transmit” VI. | MPLEMENTATION

position information referring to future instances. Intpardar, . .

at VRS local timet,, executey = g(6; 7, t. + Dy + D) and A Free design options

transmit theg that is essentially a predicted value of robot’s The methodology presented in Sections Il through V pro-

position. Of course this “trick” will result to invalid pason vides a framework for implementing a virtual robot and

information whenever prediction fails, i.e., when a motiomarious forms of interfaces that allow for issuing steering

command executed betweeén andt. + Dy + D, happens commands and acquiring real-time information regardisg it

to alter the trajectory. position. In addition we have sketched the interesting domb

On the other hand, setting = D, (ref. Figure 6) the tion of a virtual and a synchronized real robot. This framewo
result of ¢ = ¢(6;7x,t°) evaluated and instantly posted ats generic in the sense that it is actually neutral w.r.t.
VRS local timet® will be delivered to the user at + D, 1) the geometry of the robot(s)

which corresponds to user's local time = ¢“ — D, = i°. 2) the adopted kinematic model describing the detailed
Consequently viewers have thilision that they obtain instant forward and inverse kinematic solutions used to describe
knowledge of robot's position. the trajectory of the robots (both virtual and real) (i.e.,

the inner structure of functiong and g)
3) the syntax of the high level language used for posting
commands and receiving position information
As already mentioned is section 1I-C the proposed model4) the exact format of the exchanged data (position param-
of virtual robot can be used as a useful stand-alone tool eters, time stamps)
for teaching (including teleeducation in robotics), plemgn 5) the (software development) platform and the (graphical)
and experimentation (by allowing low cost simulation oflrea user interfaces used to implement the VRS and the
plants). client-server components of the interfacing modules

V. MIXING REAL AND VIRTUAL ROBOTS

S|
o s VII. CONCLUSION
Ao oo A generic model for simulating the kinematic behavior of
robotic arms was presented in this work. The structure of a
trajectory list consisting of time intervals where roboinjs
follow a piecewise polynomial path was used to represent
robots time varying state. A formal method for updating this
structure when time-stampted motion commands are issued
was proposed. The corresponding algorithm was considered
as the computational core of the proposed Virtual Robot
Simulation (VRS) Engine. In addition, the same engine is
equipped with the functionality of responding to position
requests at arbitrary time instances. Constraints impdased
the operation of VRS in real-time mode were explored. Two
elementary interfaces, namely the (trajectory) designdrtae
Fig. 7. The Supervisor interface of the virtual PUMA robotheTleft Observer were presented and subsequently used to build user
panel is used_ to issue position comrr_lands (that WiII_ be f(_]_mm‘to _the interfaces of higher level, i.e., the supervisor and theveie
gf“tfgci’%oﬁﬂg":ésirt?gglf:]efér?nn;igzes{r'ggfnf’and provides tiisualization 1, \ a5 also described how the latter can be implemented in
order to allow communication over a data network suffering
from delays (such as the Internet). The use of the proposed
6) the network protocols employed to support data inte?imulation environment in conjunction with a real r_obot was
change proposed as a means to overcome the lack of direct visual
) .) . feedback in teleoperation applications.
Purpo;ely foIIovymg this ab;traptlon we tried to decompose p prief report on our implementation of the proposed
modelling from implementation issues. virtual robot modelling and the corresponding interfaces w
presented after all.
The authors are currently exploring the many open issues
not covered within the proposed scheme. Among them, the

In our experiments we adopted certain options and maHl?St intefesting ones include (a) the handling of delagsrjitt
particular implementation choices that are described @ tfi-€- the time varying nature of network delays), (b) the-ef
sequel. cient encoding of transmitted position information by ddes-

The kinematic model adopted for the construction of fund?9 tool_s like M'_DEG'4' (C)_ the extension of motion c_ommand§
tions f and g is fully compatible to a PUMA robotic arm to cont|nuou§ time steering mode_ (eg. by dragg'_”g rqbots
with six rotary joints available in the Robotics Lab of OULIOOI)’ (d.) .theblmprovemhent of user _mterfaces bg aﬁ dlngbtilirtgh
department. For compatibility reasons VAL-Il has been usdgferactivity between the supervising user and the robat an

as a reference model for the high level syntax of motioW) the improvement of the synchronization between the&irt
commands and position specification and the real robot (by adding a direct mutual communication

The real time implementation of our VRS is based olllnnk)‘
Matlab v.6.5 release 13 and a number of forward and inverse
kinematics routines emulating the kinematic model of PUMA. REFERENCES
The server side components of Viewers and Supervisd)Hs K. Taylor and B. Dalton. Internet robots: A new roboticihre. IEEE

. . . Robotics and Automation Magazjng&(1), January 2000.
were developed in Java (version JDK 1.4.2 from Sun M 2] H.ShenR. C. Luo, K. L. Su and K. H. Tsai. Networked ingdint robots

crosystems). These components are essentially trargglatin through the Internet: Issues and opportunitiBsoceedings of the IEEE
VAL-II position commands into Matlab calls that modify the 91(3):371-382, 2003.

. . . . A Kuk-Hyun Han, Sinn Kim, Yong-Jae Kim, and Jong-Hwan Kimternet
trajectory structure as described in Section II-B. Thentlsde control architecture for Internet-based personal robofutonomous

interfaces are graphics enabled java applets that use VRML9 Robots 10(2):135-147, 2001.

and Java3D to visualize the position of the virtual robof.(rel4] |- Belousov, G. Clapworthy, and R. Chellali. Virtual figg tools for
Figure 7) Internet robotics. INIEEE Intl. Conf. on Robotics and Automation
’ ICRA’'2001 pages 1878-1883, Seoul, Korea, May 2001.
Data exchange, i.e., the communication between clients gbjdR. Oboe and P. Fiorini. A design and control environmestt Ifternet-
; based teleroboticsintl. J. of Robotics Researchi7(4):433-449, 1998.
SEIVers 1S .based ,On TCP/IP. i (56] J. Tan and G. L. Clapworthy. Virtual environm((en)ts fordmiet based
Viewers in particular, comprise of a broadcast server mod- ropots- i: Modeling a dynamic environmenBroceedings of the IEEE
ule shared by more than one clients. Each broadcast server91(3):383-388, 2003.

transmits robot’s position information periodically adegad] 'éai';ghs'zﬁgngg't‘fjﬁ afgsg. LeeRobotics McGraw-Hill International
via successive invocations of functign More than one such (g] T. voshikawa. Foundations of roboticsCorona Publishing Co.Ltd, 1990.
servers can be spawned simultaneously delivering positil§h J. Craig. Robotics Mechanics and ControAddison-Wesley Publishing
“frames” at different rates to Viewer Clients that connext t ©°- 1986

them. Frame rates of up 0 frames per second have been

tested without serious overload of the Matlab based VRS.

I

Java Applet Window

B. Implementation choices

