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 Abstract -The objective of this paper is to present a tool 
and a comparison of techniques that can help in the material 
selection process based on pattern recognition and using 
dimensionless parameters from Π theorem. It is known that 
the main disadvantage in materials selection is that a huge 
database is needed to make the selection and also to make 
clusters of materials with some characteristics, so we need an 
easier and automatic way to cluster materials with respect to 
their physical and mechanical properties, and particularly for 
material machinability. This paper also shows a possible 
application related to material selection using this approach 
to complement the conceptual design of a part coding system 
using neural network techniques.
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I.  INTRODUCTION 

 Group technology is a technique and a philosophy that 
improves the efficiency in production by means of 
grouping a great variety of parts using information of their 
shape, dimensions and working process routing [1, 2]. 
 
 The main requirement of group technology is to have a 
coding system and a part classification that describes part 
characteristics, as well as their geometrical form, material 
and working process routing to produce these parts with a 
code number, gathering this way the parts with similar 
codes in a specific manufacturing cell or group of 
machines [3-5]. 
 
 Parts grouped into families are widely used in 
manufacturing in order to get profit from their similarities 
[6]. Grouping parts into families can make easier 
manufacturing, process planning and production [7].  
 
 Π theorem or Buckingham theorem is a tool that helps 
us to take into account various properties which can be 
used to give material characteristics such as machinability. 
As the units are dimensionless, they can assist in the design 
of a Flexible Manufacturing System (FMS) [8]. It is known 
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that artificial intelligence techniques [9] like pattern 
recognition can help a lot in problems where there is a 
missing mathematical model or information about the case 
of study, so in problems like machinability [10] and 
materials selection we can use these techniques working 
with dimensionless numbers to make clusters of materials 
with the same characteristics of machinability to have an 
enormous database containing materials and their 
properties [11]. This enables us to generate material 
working parameters form only a limited selection of 
physical and mechanical properties.  
 

2. METHODOLOGY 

 Pattern recognition was selected as an intelligent tool 
for classification and recognition of groups or clusters with 
similar characteristics of machinability. The algorithms 
studied for this job were K-means, Fisher´s, lambda 
classification, expectation maximization and Isodata 
algorithms. All of them use statistical tools to separate 
clusters of points from different groups in different ways, 
one of them will be selected for the present application 
[12-17]. 
 
 Materials selection process was the issue which 
initiated this work [18]. There are many ways of selecting a 
material, but the most used is the Ashby map [8], where 
material clusters are made considering two properties of 
the materials. The information defining these clusters is 
held within a large database (image 1). The aim of this 
thesis is to process this clustering without the need of a 
database and to include more properties in one 
representation. 
 
 As we need to have a many properties in one graph 
and we want to have dimensionless points in the graph we 
need to use dimensionless numbers theory that helps when 
developing experimental techniques. 
 
 Fluid Mechanics uses dimensional analysis which does 
not give a complete solution. The success of this analysis 
depends on the skill to define parameters that would be 
applied. If one of the variables is omitted, the result will be 
incomplete and incorrect conclusions will be generated. 
 



 The Π Buckingham theorem can be extrapolated to 
machining and metal-cutting applications, which can be 
applied to Group Technology (GT) directly [19-21]. 
Machining relationships are a good example showing how 
easily Π Buckingham theorem can be applied.  
 

 
Image 1 

Ashby map 
 

 The relationship argued by F.W. Taylor defined by 
equation (1), where cutting rate and tool life equals a 
constant makes it possible to establish a link with FLT 
system (force-length-time) Eq.(2):  
 

CVT n =           (1) 
 f(L,T)C =          (2) 

 
 A large version from the Taylor equation, defined by 
Eq. (3) exists, where variables such as: feed, cutting depth 
and the material hardness are involved:  
 

yxn  f d V TC =         (3) 
(ref)(ref)H(ref)d (ref)f KTHq dfVT qpmnpmn =  (4) 

 
 Where f is the feed rate, d is cutting depth and H is the 
hardness of the material as you can see in equation (4). 
 Exponents x, y, m, p and q can be determined 
experimentally. K is a constant value analogous to C.  

 
 We focused on the variables of the Taylor equation for 
making dimensionless numbers using the following 
mechanical and physical properties: Yield Strength, 
Vickers Hardness, Cutting Speed, Cutting depth, Tool life, 
Linear expansion, Thermal conductivity, and Density. 
 
 Now we used the Π theorem by means of making a 
dimensional analysis of each property and decompose them 
in their basic units that are length (m), weight (kg), time (s) 
and temperature (k) according to international units system. 

 

2.1 THE BUCKINGHAM’S Π (PI) THEOREM 
 
The Buckingham’s Pi theorem [22] establishes that with a 
physically meaningful equation which involves a certain 
number of physical variables ( n ) expressible in terms of 
k  independent fundamental physical quantities. We can 
obtain an equation with a set of p = n – k dimensionless 
variables. This is made up from the original variables and 
the original expression. For the purposes of this paper, we 
want a system of physical properties which share the same 
description in terms of these dimensionless numbers. 
In mathematical terms, we are looking to have a physically 
meaningful equation such as: 

0),...,,( 21 =nqqqf  
where the qi  are the n  physical variables expressed in 
terms of k  independent physical units. This equation can  
then be expressed by, 

0),...,,( 21 =nF πππ  
where the πi are dimensionless parameters constructed 
from the qi  with p = n − k  equations like,  
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where the exponents mi  are constants. 
 
The Buckingham π theorem provides a method for 
computing sets of dimensionless parameters from the given 
variables, even when the form of the equation is still 
known. However, the choice of dimensionless parameters 
is not unique, for purposes of this work we are looking 
after non dimensional numbers using a combination of 
physical and mechanical properties of materials; 
Buckingham's theorem only shows up a way of generating 
sets of dimensionless parameters. We are giving a meaning 
to each number generated related to materials selection in 
mechanical design and their easiness to their machining 
processes.  
 
Two systems for which these parameters coincide are 
called similars; they are equivalent for the purposes of the 
equation, and we can choose the most convenient one for 
the purposes of this job. 
 
 From this theorem we obtain the following two 
dimensionless numbers: 
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Where  
  Yield Strength (σY) 
  Vickers Hardness (HV) 
  Cutting Speed (VC) 
  Cutting Depth (P) 
  Tool Life  (Th) 
  Linear expansion  (αL) 
  Thermal Conductivity (Ct) 
  Density  (ρ) 



Through some mathematical procedures we combine these 
properties [23] so we obtain the following expressions. 
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 With this number we make a graph with 43 of the most 
common materials with different properties to view how 
the materials are spread over a two dimensional graph, as 
present below (graph 1). 
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Graph 1 
Dimensionless Numbers Graph 

 
 Over all the pattern recognition algorithms studied we 
compared K-means [13, 24, 25] and Isodata [26] 
algorithms due to a good separation over our groups of 
points and they are unsupervised algorithms that make 
clusters using Euclidean distances between each point.  
 

Graph 2 shows how materials are grouped together 
according the material type, the group with more density 
corresponds to metals, the one with red points corresponds 
to polymers, and ceramics are represented in two groups 
with different properties indicated by blue points. These 
four clusters in this graph represent applications for 
different industries, not their machinability. 
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Graph 2 

General clusters according to their machinability 
 
 K-means, was the first method we tested, by definition 
is a nonhierarchical method that initially takes the number 

of components of the population equal to the final required 
number of clusters. In this step the final required number of 
clusters is chosen such that the points are mutually furthest 
apart. Next, it examines each component in the population 
and assigns it to one of the clusters depending on the 
minimum distance. The centroid’s position is recalculated 
every time a component is added to the cluster and this 
continues until all the components are grouped into the 
final required number of clusters [13]. We have developed 
a tool with C# programming language to demonstrate 
graphically how these two methods are used for this 
specific application, and also to compare how good the 
results against their machining properties are. 
 

 
Graph 3 

Dimensionless numbers after k-means algorithm for four clusters 
 
 

 The results match expectations as we have 4 clusters in 
which there are two clusters of ceramics, one cluster of 
polymers and one cluster for all metallic materials that 
have similar characteristics of machinability. 
 

For K-means method, the Graph above shows the C# 
output of four clusters generated with this dimensionless 
numbers (graph 3). 
 

 
Graph 4 

Dimensionless numbers after k-means algorithm for three clusters 
 



In Graph 4, the three groups are not consistent with 
machinability expectations, so it is not able to model the 
representation that we are looking for. For accuracy using 
this method it is important to know how many clusters are 
required, however this information will not be known.  
Therefore this method does not provide acceptable results. 
 
 As we needed to compare these results with other 
methods, we tested the Isodata algorithm, which has some 
further refinements by splitting and merging of clusters. 
Clusters are merged solving if either the number of 
members in a cluster is less than a certain threshold or if 
the centers of two clusters are closer than a certain 
threshold. Clusters are spitted into two different clusters if 
the cluster standard deviation exceeds a predefined value 
and the number of members (points) is twice the threshold 
for the minimum number of members. 
 
 Isodata algorithm is similar to the K-means algorithm 
with the distinctive difference that Isodata makes it 
possible to work with different numbers of clusters while 
the K-means assumes that the number of clusters is known 
at priori. Also, Isodata algorithm can vary the number of 
clusters even when we put a desired certain number of 
clusters before the first iteration of the algorithm, thanks to 
the statistical tools used in this algorithm during its process 
[27, 28]. 
 
 In graph 5, we tested the Isodata algorithm defining 
five clusters to be made, it consistently ended to three 
clusters. So we had different clusters of the same materials. 
In this same graph we can see that one ceramic material is 
merged to the metallic materials. As we know this material 
has similar machinability coefficients so we could say that 
the results of this method are better than the results with 
the K-means algorithm. 
 

 
Graph 5 

Dimensionless numbers after Isodata algorithm 
 

As we have only 43 materials [29] in our sample, we 
do not want too many clusters.  As we can see, in graph 6 
we have obtained 7 clusters, which give a good 
representation of expected results.  However, at this stage 

we are not looking for this level of detail.  Further proving 
of this technique can be conducted at a later stage.  
 

 
Graph 6 

Dimensionless numbers after Isodata algorithm for twenty clusters 
 
 After this process, this program assigns a number for 
each cluster that has the input data to a Support Vector 
Machine (SVM) [30, 31] that is trained for entering new 
material data and assigning a group to the new point added 
to this system, all of this for purposes of integrate a pair of 
positions into a parts coding system for giving information 
about mechanical and physical properties, as well their 
machinability rate. 
 
 In the image 2 it is shown how the SVM gives the 
output to the new data that we entered to the developed 
software using the SVMmulticlass program that is simulator of 
multiclass SVM’s of Cornell University [32]. 
 

 
 

Image 2 
SVM Outputs 

 
3. CONCLUSIONS 

 
 In the present paper we can see how the union of 
techniques like Π theorem and dimensional analysis, in 
conjunction with artificial intelligence can be a powerful 
tool for automation in manufacturing processes. It is 
demonstrated that cluster separation via K-means algorithm 
helped spread out the main groups in this job, but the 



Isodata algorithm gives more suitable results with less 
clusters in machinability manner. 
 
 The Π theorem can be extrapolated to machining and 
metal-cutting applications which can be applied to GT 
directly, where neural networks where implemented for  
information processing. Training the network with this 
input data was a straight forward task, so extracting 
information and testing new materials after using these 
pattern recognition techniques will also be a manageable 
task. 
 

4. REFERENCES 
 
[1] Greenwood N.1988.‘Implementing Flexible Manufacturing Systems‘. 
Macmillan Education. E.U.A. 
[2] Hernández, Rafael. “Desarrollo de un algoritmo de asignación de 
operaciones tradicionales de corte con desprendimiento de viruta basado 
en el sistema de clasificación y codificación de piezas KK-3”. Tesis. 
ITESM-CEM. 2001. 
[3] Ferré R. 1988. ‘La fábrica flexible‘. Marcombo.  
[4] J. J. Dhingra., K. L. Musser., & G. L Blankeship, Real time operations 
sheduling for flexible manufacturing systems, Winter simulation 
Conference, 1992. 
[5] Drake R.G., Smith J.J., Peters B.A, 1995. ‘Simulation as a planning 
and scheduling tool for flexible manufacturing systems. ‘Winter 
simulation Conference 1995.  
[6] Chen, S.J. and Cheng C.S. A neural network-based cell formation 
algorithm in cellular manufacturing. International Journal of Production 
Research, vol 33, No. 2, 1995, pp 293-318. 
[7] Srinivas G., E. D. Fasse E.D., Marefat M.M. ‘1998 Retrieval of 
similarly shaped parts from CAD database‘. IEEE International 
Conference on1998, Vol. 3, pp 2809-2814.  
[8] ASHBY, MICHAEL F. “Materials Selection in Mechanical Design”, 
Second Edition, Butterworth Heinemann, 1999. 
[9] Russell, Norvig, “Artificial Intelligence: A Modern Approach”, 2nd 
Edition, Prentice Hall 2003.  
[10] Bralla, James, Manual de diseño de producto para la manufactura. 
Guìa pràctica para producciòn a bajo costo, México, D. F., McGraw-Hill, 
1993, 3 tomos. 
[11] Nikolopoulos Chris, Shareef  Iqbal, and Kalmes Donald; Neural 
Network Based Machinability Evaluation, R. Loganantharaj et al. (Eds.): 
IEA/AIE 2000, LNAI 1821, pp. 723-730, 2000. 
[12] Tzeng Su C. 1994. ‘A fuzzy approach for part family formation‘. 
National Yunlin Institute of Technology, Taiwan, pp. 289-292.  

[13] Duda, Richard and Hart, Peter, Pattern Classification, second edition, 
U. S. A., Wiley Interscience, 2001, 654 págs. 
 
[14] Logendran, R. and Thomas, M.W. A comparison of methodologies 
for efficient part-machine cluster formation, Computers and Industrial 
Engineering, Vol. 21(1-4), May 1991, pp 285-2289. 
[15] Rosen, Robert. Similitude, Similarity, and Scaling. SPB Academic 
Publishing. 1989, 207-216,. 
[16] BISWAS, G., WEINBERG, J., AND LI, C. 1995. “A Conceptual Clustering 
Method for Knowledge Discovery in Databases”. Editions Technip. 
[17] Papamichail Georgios P. The K-Means Range Algorithm For 
Personalized Data Clustering In E-Commerce. 14th Mini Euro 
Conference, Human Centered Processes, Distributed Decision Making and 
Man-Machine Cooperation, 5-7 May 2003,  Luxembourg. 
[18] Ramos J. 1997. ‘Algunas consideraciones sobre la competitividad 
internacional y su  cuantificación‘.ESEconomía. Instituto Politécnico 
Nacional. México, Vol.IV, No.17.  
[19] J. L.Garibay J.L. 1999. ‘Creación de una metodología para el diseño, 
evaluación y selección de sistemas flexibles de manufactura 
metalmecánica‘. Tesis de Maestría ITESM.  
[20] Groover, Mikell. “Automation, Production Systems and Computer 
Integrated Manufacturing.” 2ª edición. Prentice Hall. E. U. A. 2001. 
[21] Askin, R. and Standridge, C.,  Modeling and Analysis of 
Manufacturing Systems., New York, John Wiley & Sons, 1993, 480 
pages. 
[22] Hanche-Olsen, Herald, “Buckingham’s pi-theorem”, 09/2001. 
[23] Kreyzig, Erwin, “Matemáticas Avanzadas para Ingeniería” Vol. I, 
Tercera Edición, Editorial Limnusa, 2003. 
[24] Zhexue, Huang. Extensions to the k-Means Algorithm for Clustering 
Large Data Sets with Categorical Values. Data Mining and Knowledge 
Discovery 2, 1998, pp 283–304 
[25] K. Alsabti, S. Ranka, and V. Singh. An Efficient K-Means Clustering 
Algorithm. http://www.cise.ufl.edu/_ ranka/, 1997. 
[26] Tou, Julius T. and Gonzalez, Rafael C, Pattern Recognition 
Principles., Pennsylvania, Addison-Wesley Pub. Co, 1974, 377 pages. 
[27] Anderberg, M.R., Cluster Analysis for Applications, New York: 
Academic Press, 1973. 
[28] BRAILOVSKY, V. L. 1991. A probabilistic approach to clustering. 
Pattern Recogn. Lett. 12, 4 (Apr. 1991), 193–198. 
[29] Shakelford, James, Materials science and engineering handbook, third 
edition, New York, U. S. A., CRC Press, 2001, 1949 págs. 
[30] Angulo Bahón, Cecilio,  “Aprendizaje con Máquinas Núcleo en 
entornos de Multiclasificación”, Tesis Doctoral, Universidad Politécnica 
de Cataluña, Especialidad en Matemáticas, Abril 2001. 
[31] González Mendoza, Miguel, “Aprendizaje Estadístico, Redes 
Neuronales y Maquinas de Soporte Vectorial: Un enfoque global”, ITESM 
CEM: Intelligent Transportation Systems Research Group, 02/2005. 
[32] Joachims Thorsten; SVMmulticlassSoftware version: 1.01; 
Department of Computer Science, Cornell Univ.; Sept. 2004. Site link: 
http://www.cs.cornell.edu/People/tj/svm_light/svm_multiclass.html

 

http://www.cs.cornell.edu/People/tj/svm_light/svm_multiclass.html

