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Abstract-This paper presents the design, training, verification 
and validation of a neural network architecture capable of 
early fault detection and fault isolation in a typical three –
tank system. Certain fault types are induced to the system and 
its behavior is monitored. Parameters such as water-level and 
temperature in the tanks, together with delayed samples are 
used to design, train and validate the neural network 
architecture. The neural network is further tested on a set of 
signal values derived from subsequent operation of the 
system, with considerable success. 

In this paper we restrict our attention to the class of 
physical processes, making use of the following two 
hypotheses: 
 
a)the system may be described by a set of state variables: 
let x∈Rn be the state vector at time t, 
b)then, the true behavior obeys a set of differential 
equations: 

 ( )*,,, θφ vux
dt
dx

=          (1) 
 
Index Terms -Neural networks, fault detection, fault 
interpretation. 

where u∈Rm and  v∈Rl   are, respectively, the control and 
the perturbation inputs, and θ*∈Rq  is a vector of the ‘true’ 
parameters.     

I. INTRODUCTION   Three basic models have been proposed for the 
description of the normal operation of the system: Faults can be defined as non-permitted deviations of 

some characteristic properties of a process that will cause a 
certain level of deterioration in the performance of the 
process [1]. Faults are generated since the mechanical parts 
and materials used in devices and processes undergo aging, 
wear, etc., and, briefly, their properties are time dependent 
and tend mostly in the direction of lowering the operational 
capabilities, safety and reliability [2].  

 
1) The behavioral model describes the way the system state 
evolves in time, as a consequence of the system inputs 
(controls and perturbations). The model closest to equation  
(1) would be a set of differential equations of the form: 

  ( θ,,, vuxf
d

)
t

dx
=        (2) 

Fault detection procedures are called to decide whether 
a system is in normal operating conditions or in faulty 
ones, on the basis of real-time observations. On-line (real 
time) procedures are necessary for fault tolerant control, 
while off-line procedures can be used for maintenance 
purposes [3]. A variety of approaches have been proposed 
in recent years, for the design of efficient real-time fault 
detection and isolation procedures by both the control and 
artificial intelligence communities [4-8].  

where f is an approximation of φ and θ is the vector of the 
previously defined model parameters. 
 
2) The measurements model describes the measurements 
that are available, in the form : 

 
y=g(x,u,v,θ,ε)        (3) 

where y∈Rp  is the output vector and ε∈Rp is the 
measurements noise. This model expresses the way under 
which the sensors transform some states of the process into 
output signals that can be used for fault detection and 
isolation. 

Real-time fault detection and isolation procedures can 
only make use of the system observables, i.e. the system 
inputs and outputs, along with their derivatives for a 
continuous-time model or along with their delayed 
(memorized) values on a given time horizon, for discrete-
time models. 

 
3) The operating range model defines the values the 
system variables are allowed to take under normal 
conditions. A direct representation is given by: 

Using these observables, fault detection and isolation is 
essentially a two-level procedure:  

  
h(x,u)≤η          (4) i) the first level is that of detection and alarm generation 

(decision whether the system is in normal conditions or 
not) and  

where η∈Rk , and  equation (4) defines a domain in the 
state and control space in which the system operates  
safely. ii) alarm interpretation, i.e., deciding which faults are 

present among a pre-defined fault set and which are their  According to which form of a model is used, system 
theory, signal processing and artificial intelligence 
approaches were used extensively in the literature [1-7].  

characteristics (occurrence time, fault size, class, conesqu-
ences etc.). 



The approach proposed in this paper uses, essentially, 
the measurements model applied to a three-tank system. A 
multi-layered artificial neural network is employed for the 
detection and isolation of faults that are induced to the 
system. Measurable quantities that are sensitive and 
informative about the system operation are used as 
symptoms that discriminate particular faults. 

 
II. THE THREE-TANK SYSTEM 

II.A. System Description 
The three-tank system is a commonly used process [9], 

consisting of three cylindrical water tanks connected by 
pipes of circular cross-section. Usually, the first tank has 
an incoming flow that can be controlled by means of a 
pump and the outflow is located in the last tank. The 
relative positions of the tanks and the existence of 
additional features such as water heating or cooling results 
in a variety of configurations for three-tank processes. The 
three-tank process used in this paper is shown in Figure 1.   

Two electronic valves control the water flow between 
the tanks, whereas, the pump recirculates water from the 
bottom tank to the top tank. A heating element (resistor) 
located at the bottom tank heats up the water, whereas a 
cooling fan placed in a perpendicular direction to the water 
flow cools down the water. A PID controller controlling 
the resistor and cooling fan is responsible for attaining an 
almost steady water temperature. Two water level sensors 
are placed in the two top tanks measuring water level and 
three thermocouples monitor the water temperature of each 
tank. The overall process is monitored and controlled 
through a Supervisory Control and Data Acquisition 
interface implemented using LabView [10]. 

Let qu be the incoming water volumetric flow to the top 
tank, si the cross-section of tank i, hi the water level of tank 
i, qii a volumetric flow due to possible leakage in the i-tank 
and ql is the water volumetric flow after the pump. Let, 
also, Ti be the temperature in tank i, Tu the temperature 
after the fan, Qii the heat losses in tank i, QF the heat 

removal by the fan and Q the heat supply provided by the 
resistor. Assuming that the density ρ and the specific heat 
cp are constants and the incoming and outgoing water 
volumetric flows are independent since they are controlled 
by the valves and not by hydrostatic pressure the 
mathematical model of the system is: 
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Together with possible leakages, a number of 

additional uncertainty factors influence the operation of the 
system. The incompleteness of the knowledge about a 
component’s behavior and ageing process needs to be 
examined. The pipes, in the proposed system are only 
partially known, for example it is not exactly clear what 
chemical reactions are actually happening between the pipe 
walls and the inside flow. On the other hand, the conditions 
of use of a pipe can have large variations in the 
temperature of the flow [5]. Moreover, in a hot-water 
vessel, the temperature of the main water volume increases 
rapidly, and the temperature of the water in front of the 
cooling fan decreases rapidly (uneven temperatures of the 
flows). The heated water results in the dissolved mineral 
particles solidifying into a scale deposit in the heated tank.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The three-tank system with sensors 
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Finally, erosions at the valve plugs, variations in water 
hardness, pipe and valve clogging, measuring sensor 
inaccuracies and system non-linearities when combined 
with the above mentioned inaccuracy factors make the 
system very difficult, or even impossible, to be expressed 
analytically in the form of equation (5) [1,9,11].  

II.B. System operation and fault types 
The normal operation of the proposed system is 

depicted in Figure 2(a). A simple water-level control 
algorithm uses the level sensor inputs to control the 
operation of the valves. If the water level in tank 1 exceeds 
l1high cm then valve 1 is opened (kept closed up to this 
level) and water flows to tank 2. Valve 1 is closed when 
the water level falls below l1low cm. Similarly, if the water 
level in tank 2 exceeds l2high then valve 2 is opened and 
water flows to tank 3. Valve 2 is closed when the water 
level falls below l2low. A PID controller is employed to set 
water temperature at 35oC, with the aid of the heating 
resistance and cooling fan. 

In order to investigate the behavior of the proposed 
system under faulty conditions, a series of deliberate faults 
were induced. The abnormal behavior of the system under 
faulty conditions was monitored through the level and 
temperature sensors and it is shown on Figures 2(b-h), for 
the different fault types. After fault manifestation, the 
system is restored to normal operating conditions by 
removing the corresponding fault cause. This is in 
accordance to the most common faults scenarios used for 
such systems [7,5,11] and these scenarios are briefly 
described as follows:  
 
i) Fault type 1: Valve 1 stuck closed. This fault is shown 
in Figure 2(b) and it is clear the water level in the first tank 
exceeds by far the normal value. 
ii) Fault type 2: Valve 1 stuck open. This fault is 
displayed in Figure 2(c) and the water level in tank 1 
reaches its minimum value. 
iii) Fault type 3: Valve 2 stuck open: Figure 2(d) displays 
the minimum water level reached for tank2 and the 
temperature drop (due to lack of water).  
iv) Fault type 4: Valve 2 stuck closed.  Obviously, in this 
case the water level in tank 2 is raised far above the 
maximum value, as shown in Figure 2(e). 
v) Fault type 5: Valves 1 & 2 both stuck open. In this 
case the water levels reach their minimum values in both 
tanks (first in tank 1 and then in tank 2, Figure 2(f)). 
vi) Fault type 6: Pump switched off.  In this case, water 
levels will also reach their minimum values, as long as the 
valves are operating (Figure 2(g)). 
vii) Fault type 7: While the pump is switched off, valve 1 
is closed. This results to a minimum level attained in tank 1  
and an intermediate level attained in tank 2 (Figure 2(h)). 

 
A fault detection and isolation procedure is required in 

order to detect faults as early as possible and to proceed to 
the necessary correcting procedures that will restore the 
process to its normal operation. 

Due to the inherent uncertainties and measuring errors 
described in the previous section, the measurements model 
approach is adopted in this paper. Input /output 
measurements of the system under normal and faulty 
operating conditions are used to train a multi-layered feed-
forward neural network that is capable to generalize and 
discriminate among normal and faulty system behavior. 
This neural network can then be used for fault prediction 
and identification. 
 

III. NEURAL NETWORK ARCHITECTURE 
III.A. System Identification 

The determination of the input signals that influence the 
system output in such a way that different output behaviors 
can be differentiated (i.e. differentiate among the different 
behaviors depicted in Figure 2) is, essentially, a parameter 
identification problem [11,12]. The choice of input signals 
influencing the output can be made by observing the output 
behavior. Additionally, input delays can be determined by 
observation of the time delay occurring between a change 
in the input signal and the related reaction of the output. 
This leads to the system model shown in Figure 3.  
However, the exact measurement of the delay time may be 
difficult, especially in the presence of noise [12]. 
Moreover, since in our case the system structure is 
assumed unknown, the choice of the model’s structure is 
not evident. 

In this paper, the determination of the delayed sample 
points that are needed for fault type discrimination was 
achieved by comparing the estimation error achieved by a 
large number of possible neural network architectures. The 
maximum number of samples per variable k was increased, 
starting from k=1. For each k, a large number of possible 
combinations were evaluated by the respective neural 
network architectures and k was increased until the 
minimal estimation error εmin(k) is achieved.  

It has been shown [12] that these methods may lead to 
local minima, which means, that the obtained model 
structure is satisfactory for the identification data, but does 
not describe the system’s behavior correctly in other 
nominal operational modes. In the neural network 
architecture proposed in this paper, the risk of choosing 
such a local model was minimized by model validation 
[13] for sets of measurements not used in the training set. 
Moreover, model checking for new data sets, after 
inducing the same faults, served as measure of the neural 
network performance [13,14]. 
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Figure 2:  a) normal operation 
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Figure 3: Identifying the network structure 
 

III.B. Neural network design 
In real-time systems, one cannot wait for a large 

number of delayed samples in order to provide an accurate 
fault prediction, since fault detection must be achieved as 
soon as possible (and trigger the proper alarms). In this 
paper, the number of previous samples for each of the 5 
input parameters (water level in tank1, tank2, and water 
temperatures in tanks 1,2,3, respectively) was kept within 
the range n-1 to n-10 (moreover, this limits somehow the 
enormous number of possible input combinations, which is 
still, very high). By repetitive design, training, verification 
and validation of a large number of neural network 
architectures it was revealed that the delays in the 
temperature signals did not play significant role in fault 
discrimination, whereas, the temperature signals  them-
selves, are quite important. This was as expected, since the 
temperature signals do not exhibit significant gradient 
changes in normal operation, except for the initial 
‘warming up’ phase, as it is shown in Figure 2(a). In faulty 
conditions, their behavior is also distinctive. For the water 
level signals, it was expected that similar samples should 
be equally important for both signals, owing to their 
qualitatively symmetrical (out of phase) behavior depicted 
in Figure 2. It was found that although the combinations of 
2 delayed samples for each water level signal (n-2, n-5, for 
both signals) resulted in small classification errors in the 
validation set, they were not very successful in the 
processing of the checking set (a data set derived from 
subsequent operation of the system). Further design and 
training of neural networks revealed the fact that by using 
the n-2, n-5 and n-8 samples for both l1 and l2, the training 
set, validation set and checking set fault classification 
errors can be minimized.  

A standard accelerated backpropagation training algo-
rithm with momentum was used. Thus, the minimization of 
the sum squared error [13,14] for the elementary multi-
layered architecture shown in Figure 4 is achieved 
according to: 

 
e=d-y where e is the error and d the desired output. 
f,g are the neuron activation function and its derivative. 
σ1,σ2,σ3 are the weighted sums of the inputs for each 
neuron. 
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Figure 4: Elementary two-layered feed forward neural 
network 



The characteristics of the best two-layered, feed-
forward neural network architecture obtained after the 
large number of input combinations are shown on Table 1. 
A pre-processing step of input /output normalization 
preceded the training phase, normalizing input/output 
vectors for zero mean and standard deviation of one [14]. 
The samples were almost evenly distributed among the 
different fault types (including the normal operation) and 3 
output neurons were used as a binary classification label 
for each of the fault types and normal operation. The 
number of neurons in the hidden layer was chosen by a 
repetitive - direct search algorithm implemented to choose 
the network structure with the best performance. The 
bipolar sigmoid activation function (denoted as tansig in 
MatLab) was used both for the hidden and output layers. It 
can be expressed as: 

1
))exp(1(

2)f( −
−+

=
σ

σ        (7) 

 
Table 1: Neural Network characteristics 

Inputs:   h1, h2, T1,T2,T3, 
h1 delayed samples :n-2, n-5, n-8 
h2 delayed samples :n-2, n-5, n-8 

Number of hidden layer neurons: 50 
Output neurons: 3 

Number of Training set samples: 1044 
Number of Validation set samples: 1044 
Number of Checking set samples: 500 

Validation set success rate: 99% 
Checking set success rate: 99% 

 
The validation vectors were used to stop training early 

since further training on the primary vectors will hurt 
generalization to the validation vectors.  

Thus, the proposed neural network architecture is 
capable of discriminating between the different types of 
faults shown in Figure 2. After completing the training and 
validation phases, the computational speed of the proposed 
neural network is quite fast since only feed forward 
calculations are employed. Therefore, faults can be 
detected in real-time and this is a significant advantage 
since the fault restoration procedures can begin 
immediately. The computational cost related to fault 
detection by using high order correlation functions, multi-
spectra density functions and the Fourier Transform [2,15], 
is much higher. 

The proposed method avoids complex matrix inversion 
problems met in the design of fuzzy relational models for 
fault detection [12]. Moreover, although there exists some 
overlap of fault features (e.g. fault type 5 and fault type 6, 
for the interval during which both water levels are almost 
at minimum values, as shown in Figure 2), the use of 
delayed samples manages to provide enough information 
for fault discrimination, in contrast to [7] where feature 
overlap is not completely resolved.  

Thus, the proposed neural network can be used for 
early detection and alarm generation in case the system 
deviates from normal operation. Furthermore, it is capable 

of alarm interpretation i.e., deciding which fault is present 
among a pre-defined fault set. 
 

IV. CONCLUSIONS 
A physical system is specifically at risk if it is not 

monitored, if some of its components need regular 
maintenance, if some of its components are insufficiently 
known, regarding their dynamical behavior and ageing 
process, or its conditions of use are not controlled and can 
widely fluctuate. This paper presented the design, training, 
verification and validation of a neural network architecture 
capable of early fault detection and fault isolation in a 
typical three–tank system i.e., deciding which fault is 
present among a pre-defined fault set. Faulty conditions 
were deliberately induced to the system and its’ behavior 
was monitored by appropriate sensors.  

In terms of system parameter identification, a number 
of delayed samples were required in order to built a neural 
network model that minimizes both training and validation 
errors. The proposed architecture compares favorably to 
other methods in terms of complexity and speed. It was 
also further tested on a set of ‘checking’ signals, derived 
from subsequent operation of the system, with remarkable 
success. 
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