
This work was partially supported by the Research Committee of the Technological Educational Institute of Serres, Greece,
under the research program Archimedes II (Αρχιµήδης ΙΙ) funded by the Greek Ministry of Education and the E.U.

Solving University Timetabling Problems Using
Advanced Genetic Algorithms

Spyros Kazarlis Vassilios Petridis and Pavlina Fragkou
Technological Educational Institute of Serres Aristotle University of Thessaloniki

Serres 621 24, Greece Thessaloniki 540 06, Greece
kazarlis@teiser.gr petridis@eng.auth.gr, fragou@egnatia.ee.auth.gr

 Abstract – Timetabling problems together with
scheduling ones constitute a class of difficult to solve
combinatorial optimization problems that lack analytical
solution methods. As such, these problems have attracted
researchers from a number of disciplines, like Operations
Research and Artificial Intelligence, who have proposed a
number of methods for solving them. In this paper we present
a method based on Genetic Algorithms (GAs), to solve
university course timetabling problems. This method
incorporates GAs using an indirect representation based on
event priorities, Micro-GAs and heuristic local search
operators in order to tackle a real world timetabling problem.
The problem on which the method is applied and tested is a
real case and comes from a Technological Educational
Institute of Greece. The GA solution is compared to the man-
made one produced by the institute’s staff and the
comparative results are discussed.

 Index Terms – Timetabling, Genetic Algorithms, Micro
Genetic Algorithms, Local Search Operators, Combinatorial
Optimization.

I. INTRODUCTION

 According to A. Wren [17]: “Timetabling is the
allocation, subject to constraints, of given resources to
objects being placed in space time, in such a way as to
satisfy as nearly as possible a set of desirable objectives.”
Real timetabling problems have many forms like
educational timetabling (course and exam), employee
timetabling, timetabling of sports events, timetabling of
transportation means, etc. Timetabling problems as well as
scheduling problems, define a class of hard-to-solve
constrained optimization problems of combinatorial nature.
Such problems are mainly classified as constraint
satisfaction problems [3], where the main goal is to satisfy
all problem constraints, rather than optimizing a number of
objectives. At present, science has no analytical solution
method for all problem cases of this category, other than
exhaustive search, which however cannot be applied but
only to toy problems, due to the immense search spaces of
real problem cases.

Automated timetabling, on the other hand, is a task of
great importance as it can save a lot of man-hours work, to
institutions and companies, and provide optimal solutions
with constraint satisfaction within minutes, that can boost
productivity, quality of education, quality of services and
finally quality of life. However, large-scale timetables,
such as university timetables, may need great effort and
many hours of work spent, by a qualified person or a team,

in order to produce high quality timetables with optimal
constraint satisfaction and optimization of the timetable’s
objectives at the same time.
 In this paper we focus on university timetabling
problems that exist in two forms: course and exam
timetabling. Within the scope of this work we focus only
on university course timetabling problems.
 A large number of diverse methods have been already
proposed in the literature for solving timetabling problems.
These methods come from a number of scientific
disciplines like Operations Research, Artificial
Intelligence, and Computational Intelligence [1, 4, 8, 12,
14, 15] and can be divided into four categories:
1) Sequential Methods that treat timetabling problems as
graph problems. Generally, they order the events using
domain-specific heuristics and then assign the events
sequentially into valid time slots in such a way that no
constraints are violated for each time slot. [5].
2) Cluster Methods, in which the problem is divided into a
number of event sets. Each set is defined so that it satisfies
all hard constraints. Then, the sets are assigned to real time
slots to satisfy the soft constraints as well [16].
3) Constraint Based Methods, according to which a
timetabling problem is modeled as a set of variables
(events) to which values (resources such as teachers and
rooms) have to be assigned in order to satisfy a number of
constraints [3], and
4) Meta-heuristic methods, such as genetic algorithms
(GAs), simulated annealing, tabu search, and other
heuristic approaches, that are mostly inspired from nature,
and apply nature-like processes to solutions or populations
of solutions, in order to evolve them towards optimality [1,
2, 7, 8, 12].
 GAs have been used for solving timetabling problems
since 1990 [7]. Since then, the literature has hosted a large
number of papers presenting evolutionary methods and
applications on such problems with significant success [6].
 In this paper we present an advanced GA based
method for solving university course timetabling problems.
This method uses an indirect representation based on event
priorities that is fully described in the next section. It also
uses a number of advanced local search operators,
including the Micro-GA combinatorial hill-climbing
operator, in order to avoid local optima, fulfill constraints
and discover optimal solutions efficiently.
 The proposed method is applied to a real-world
university course timetabling problem that comes from the
Technological Educational Institute of Serres, Greece, for

which a man made solution was also available, and has
been used to compare the results of the GA method.
 The paper is organized as follows: Section II analyzes
university course timetabling and the specific real case that
is used as a benchmark. Section III presents the advanced
GA method and all advanced operators used by it. Section
IV presents the simulation results and finally conclusions
are presented in Section V.

II. UNIVERSITY COURSE TIMETABLING

 In general a university course timetabling problem
consists in finding the exact time allocation within a
limited time period (e.g. a week), of a number of events
(courses-lectures) and also assign to them a number of
resources (a teacher, a room, etc.) in such a way that a
number of constraints are satisfied. Usually courses are
organized in a number of semesters (e.g. 8). The
constraints that have to be satisfied by a timetable are
usually divided into two categories: hard constraints and
soft ones.
 Hard constraints are those constraints that must be
rigidly fulfilled. Examples of such constraints are:
- No resource (teacher, student, room, etc.) may be
assigned to different events at the same time.
- Events of the same semester must not be assigned at the
same time slot (in order for the students of the semester to
be able to attend all semester lessons).
- Assigned resources to an event (e.g. teachers) must
belong to the set of valid resources for that event (e.g. only
specific teachers can teach a specific course).
 On the other hand, soft constraints are those that it is
desirable to be fulfilled to the possible extent, but are not
fully essential for a valid solution. Therefore, soft
constraints can also be seen as optimization objectives for
the search algorithm. Examples of such constraints are:
- Schedule an event within a particular “window” of the
whole period (e.g. on evenings).
- Minimize time gaps or travel times between adjacent
lectures of the same teacher.

The specific problem we used in this work comes from
the Technological Educational Institute of Serres, Greece,
and involves the weekly scheduling of all courses of the
Department of Informatics & Communications of this
Institute. The specifications of this problem are shown in
Table I.

TABLE I
TIMETABLING PROBLEM SPECIFICATIONS

No. Description Quantity
1 No of courses 71
2 No of different lectures 187
3 No of scheduled events 192
4 No of semesters 7
5 Lecture types (theory / lab practice) 2
6 No of teachers 82
7 No of rooms 17
8 No of days 5
9 No of time-periods (hours) within a day 13

In Table I the value of “13” for the field “time-periods
within a day” just denotes the possible “starting periods” of
each class (from 8:00 am to 20:00 pm) and not complete
time slots that can accommodate equal number of
consequent classes. As different lectures have different
durations (2..4 hours), the real number of consequent
classes that can be scheduled within a day depends on the
specific set of classes chosen and their durations.

The hard constraints considered for this problem are
shown in Table II.

TABLE II
HARD CONSTRAINTS OF THE TIMETABLING PROBLEM

No Hard Constraint
1 No resource (teacher or room) may be assigned to

different events at the same time
2 Events of the same semester must not be assigned

at the same time slot when both events are of type
“theory” or when one event is “theory” and one
event is “lab practice”. Same-semester events can
run concurrently only if they are both of type “lab
practice”, as for each course 4..6 “lab practice”
classes are scheduled within the week, each
attended by a different group of students.

3 There is a maximum number of time periods per
day (13), that may not be exceeded

4 Each lecture may be held in a room belonging to a
specific set of valid rooms for the lecture

5 Each room may have its own availability schedule
6 Each lecture may be assigned to a teacher that

belongs to a specific set of teachers that can deliver
the lecture.

7 Specific lectures must be rigidly assigned to
specific teachers.

8 Classes of type “theory” need one teacher while
classes of type “lab practice” need 2 teachers.

 The soft constraints considered for this problem are
shown in Table III.

TABLE III
SOFT CONSTRAINTS OF THE TIMETABLING PROBLEM

No Soft Constraint
1 Every teacher has his/her own availability schedule

or submits a plan with desirable time periods that
suits him/her best

2 Every teacher has a minimum and a maximum limit
of weekly work-hours

3 If a class is broken in more than one non-
contiguous lectures within a week, a specific
number of days must be left between these lectures.

4 Minimize the travel time of teachers and students
between rooms within the campus

5 Minimize the time gaps within the schedule of each
teacher

6 Minimize the time gaps within the schedule of each
room

There are three reasons for selecting the specific case

as a benchmark. Firstly because the authors had access to
the real constraints considered for developing the man-

made solution to the problem, in order to set-up the
timetabling problem on a realistic basis. Secondly because
the authors had easy access to man-made solutions for this
problem, and could easily make comparisons. The third
reason was the fact that the specific problem is not an easy
one to solve, and thus can serve as a demanding benchmark
for developing an efficient optimization algorithm.

The difficulty of the chosen problem case is justified
by the following facts:
a) The problem has two types of lectures (“theory” and
“lab practice”) with diverse characteristics and constraints.
b) The timetable has too few rooms (only 17) that have to
accommodate all taught lessons, a fact that makes the
timetable very tight. Some of the rooms are laboratories
designed for “lab practice” classes, and others are lecture
rooms. In practice, all 9 laboratories are occupied by
classes, for the full number of periods per day and all five
days with only minor time-gaps.
c) Specific classes may be taught in specific rooms. Theory
classes can be assigned to any of the 8 lecture rooms, but
“lab” classes must be assigned to specific “lab” rooms.
d) There is a large number of teachers, each of which has
his/her own minimum and maximum hour limits per week,
and the ability to teach in a limited set of classes.

To give a metric of how constrained the problem is we
could simply mention that 5 of the rooms with 135
theoretical time slots (13 hours per day / 2.4 avg. hours per
class x 5 days x 5 rooms) have to accommodate 110 events,
and of course there are certain constraints as of which class
can be held in which room that further reduce the possible
room (and time-slot) choices for every class.

III. THE ADVANCED GA IMPLEMENTATION

In order to solve the timetabling problem described in
the previous section, we have developed an optimization
method based on Genetic Algorithms (GAs) that
incorporate a number of advanced techniques and domain
specific local search operators.

The first thing to consider was the representation
method to use in order to encode a timetable solution into
an encoded form or chromosome, suitable for applying the
genetic operators. According to the literature two different
approaches are used: “direct” and “indirect” ones.

A “direct” representation [2] directly encodes all event
attributes (day, time slot, teacher, room, etc.) for all events.
Thus, in these cases the GA has to decide for all timetable
parameters and deliver the complete and constraint free
schedule. Following this principle results in a very large
search space where solutions that satisfy all constraints
seem like “needles in a haystack”. Moreover, directly
encoded solutions, that undergo the genetic operators,
frequently result in invalid solutions, that have to be
“repaired” or handled in some manner.

In “indirect” representations [12] the encoded solution
(chromosome) usually represents an ordered list of events,
which are placed into the timetable according to some pre-
defined method, or “timetable builder”. The timetable

builder can use any combination of heuristics and local
search to place events into the timetable, while observing
the problem’s constraints.

For the GA implementation of this work we have
chosen an “indirect” representation that encodes 4 fields
for each event into the chromosome:

a) Day to allocate the event
b) Teachers (1 or 2) to assign to the event
c) Room where the event will be held
d) Priority to allocate the event within the day.

Of course all fields are first encoded as integers and then
entered into the chromosome as binary numbers.

When GA produces such a solution, it first decodes it
to gain these four fields for every event in the schedule.
Then it invokes a “timetable builder” routine called
“timetabler” that works as follows:
1. It separates events into clusters, one for each day.
2. For every cluster, it sorts the events according to their
“priority” values and in ascending order (small values
mean high priority and are placed first).
3. It takes the first event in the cluster (higher priority),
marks it as taken, and tries to place it into the schedule of
the particular day.
4. Starting from time slot 1 it places the event and checks if
any constraints are violated. If not the allocation is fixed
and the algorithm moves on to the next event in the cluster.
5. If any constraints are violated, it tries to allocate the
event into subsequent time periods, until all constraints are
satisfied.
6. If there exists no time period for which all constraints
are satisfied, the event is marked to violate the “maximum
time periods per day exceeded” constraint (constraint no 3
from Table II).
7. The algorithm continues with the next event in the list.
When all events have been processed, the “timetabler”
moves to the next cluster (day), and this is repeated for all
days in the schedule.
 A similar algorithm has been proposed in [4] where a
non-evolutionary heuristic algorithm is proposed for exam
timetabling problems. All events are sorted according to a
“measure of difficulty” figure that is dynamically adapted
during the run, and difficult to schedule events are handled
first. However, in this paper’s approach, the allocation
priority of events is determined genetically.
 The “timetabler” manages to satisfy hard constraints
1,2,5,7 and 8 of Table II, while all other constraints are left
to be satisfied by the GA.
 After “timetabler” has produced the timetable, it is
evaluated through a fitness function that analyzes the
solution and calculates its overall fitness value as a sum of
weighted scores and penalties for all constraints (hard and
soft) as well as objectives. The fitness function used in this
GA implementation is of the form:

∑ ∑
= =

×+×=
6..1 6,4,3

)()()(
i i

hard
i

h
i

soft
i

s
i xPwxPwxF (1)

where x is the timetable under evaluation, Pi
soft (x) is a

measure of violation of the ith soft constraint, Pi
hard (x) is a

measure of violation of the ith hard constraint, wi
s is a

weight factor for the ith soft constraint, and wi
h is a weight

factor for the ith hard constraint. This function must be
minimized.

From the above it is clear that, some of the problem’s
constraints are handled by the “timetabler” during the
construction of the complete solution from the genetically
produced abstract solution. The rest of the constraints are
handled using a penalty function that is composed as a
weighted sum of penalty terms, each of which corresponds
to a measure of violation of each constraint. Moreover, soft
constraints could also be seen as optimization objectives
that have to be optimized to the possible extent.

The next thing to consider was the blend of genetic
operators to incorporate into the GA method, in order to
achieve maximum optimization performance. To do this
we first considered standard operators as well as general
purpose combinatorial operators. The operators and their
parameters considered are shown in Table IV.

TABLE IV
STANDARD OPERATORS AND PARAMETERS CONSIDERED

No Operator Parameter
1.1 Crossover 20-point
1.2 Crossover Uniform
2.1 Mutation prob=0.005
2.2 Mutation prob=0.01
3.1 Window Mutation operator prob=0.1
3.2 Window Mutation operator prob=0.3
4.1 Swap Chromosome operator prob=0.1
4.2 Swap Chromosome operator prob=0.3
5.1 Swap Bit operator prob=0.1
5.2 Swap Bit operator prob=0.3
6.1 Swap Window operator prob=0.1
6.2 Swap Window operator prob=0.3
7.1 Random Genotype operator prob=0.1
7.2 Random Genotype operator prob=0.3
8.1 Mutate Chromosome operator prob=0.1
8.2 Mutate Chromosome operator prob=0.3
9 Bit Swap-Mutate Hill Climbing oper. prob=0.5

10 Window Swap Hill Climbing oper. prob=0.5
11.1 Varying Fitness Function Linear
11.2 Varying Fitness Function Square
11.3 Varying Fitness Function Exponential
12.1 GA Population 100
12.2 GA Population 200
13 MicroGA Combinatorial Hill Climb. prob=1.0

Operators 3 (3.1) through 10 are described in [10]. The
Varying Fitness Function technique is described in [13].
Operator 13 is described in [9, 11].
 The standard GA setup employed Roulette Wheel
Parent Selection, population of 50 solutions, standard 5-
point crossover operator, bit mutation operator with a
probability of 0.001 per bit, elitism, replacement of the
whole population of parents with offspring, fitness scaling
and a generation limit of 5000 generations. The operators
(and their parameters) of Table IV where tested in order to
decide whether to adopt them or not in the final algorithm.

The corresponding simulation results are presented in
section IV.
 Due to the specific nature and difficulty of the problem
we have also considered domain specific hill climbing
operators that are applied only to the best solution of each
generation. These operators are:
a) Change Day Hill Climbing Operator
 This operator selects an event at random and changes
its encoded day-of-allocation field, assigning to it all day
values sequentially, except from the original day value.
Every time the resulting timetable is evaluated and if it
scores better than the original then the change is kept,
otherwise the old day value is restored.
b) Fix Teacher Hill Climbing Operator
 This operator finds all events with teacher-class
constraint violations (constraint 6 of Table II) and selects
one such event at random. Then it changes the encoded
teacher-to-allocate field, assigning to it all valid teachers
sequentially, except from the original one. Every time the
resulting timetable is evaluated and if it evaluates better
than the original, then the change is kept, otherwise the old
teacher value is restored.
c) Fix Room Hill Climbing Operator
 This operator finds all events with room-class
constraint violations (constraint 4 of Table II) and selects
one such event at random. Then it changes the encoded
room-to-allocate field, assigning to it all valid rooms
sequentially, except from the original one. Every time the
resulting timetable is evaluated, and if it evaluates better
than the original, then the change is kept, otherwise the old
room value is restored.
d) Fix Day Hill Climbing Operator
 This operator finds all events that are allocated beyond
the maximum time-periods-per-day limit (constraint 3 of
Table II), and selects one such event at random. Then it
changes the encoded day-of-allocation field, assigning to it
all day values sequentially, except from the original one.
Every time the resulting timetable is evaluated, and if it
evaluates better than the original, then the change is kept,
otherwise the old day value is restored.

It is obvious that these four operators are specifically
designed to give the GA the ability to fulfill all three hard
constraints (constraints 3,4,6 of Table II) that are not
satisfied automatically by the “timetabler”. The
effectiveness of these operators has been also tested and
simulation results are reported in section IV.

IV. SIMULATION RESULTS

 In order to decide which operators of Table IV to
adopt, one should run simulations for all parameter
combinations. However the number of combinations
(nearly 420,000) is prohibitive for exhaustive evaluation.
Thus, we have applied an “elitism-like” technique in order
to reduce the number of simulations needed. This
technique goes as follows:
 First we conducted a simulation experiment for the
standard GA setup described in the previous section. The

experiment consisted of 10 independent runs. After the
completion of the runs we calculated three statistical
figures: the overall best solution quality achieved, the
overall worst solution quality achieved and the average
solution quality achieved, throughout the 10 runs. Then,
we added the first operator setup of Table IV to the
standard GA setup and another simulation round of 10 runs
was launched. The results were compared to those of the
standard setup via the three statistical figures mentioned
above. If the new setup had better performance than the
original, then the new setup was adopted as the “best-so-
far” setup. Otherwise the tested setup was ignored. With
this method only 25 simulations of 10 runs each are needed
to evaluate the operators (and their parameters) of Table
IV. Of course the validity of this method is based on the
assumption that the operators are more or less independent
of each other, a fact that is pretty much close to truth, and
is also justified by experimental results.
 The simulation results for the operators of Table IV are
shown in Table V, where all adopted setups are marked
with two asterisks “*” and are displayed in bold typeface.

TABLE V
SIMULATION RESULTS FOR STANDARD OPERATORS AND PARAMETERS

Setup Mean Qual. Best Qual. Worst Qual.
Standard 74192 61087 97073

1.1 72387 52087 91080
* 1.2 * 67980 60102 76077

2.1 72482 57079 83072
2.2 81798 65113 93120
3.1 61486 50092 76090

* 3.2 * 61596 44118 78093
* 4.1 * 66387 42095 83094

4.2 65190 52094 76094
5.1 70192 56091 83101
5.2 65991 53101 83085
6.1 65992 54092 88094
6.2 65288 56094 76072
7.1 71793 61117 80096
7.2 76979 52102 89087

* 8.1 * 53590 45093 65079
8.2 59789 45097 77103
9 68581 46085 92080

10 58389 48098 71101
11.1 50370 39078 67089

* 11.2 * 52359 37093 63036
11.3 57796 47764 69626
12.1 53388 39084 88098

* 12.2 * 42089 26104 59082
* 13 * 29882 23082 35078

From Table V it is clear that the operators that exhibited
best performance and were adopted in the GA scheme are:
1. Uniform Crossover
2. Window Mutation operator with a probability of 0.3
3. Swap Chromosome operator with a probability of 0.1
4. Mutate Chromosome operator with a probability of 0.1
5. Varying fitness Function with square increase.
6. GA population of 200 genotypes, and

7. Micro GA combinatorial hill climbing operator.
By adding these operators to the standard GA scheme

we have managed to evolve the best overall solution from
the value of 61087 for the standard setup, down to the
value of 23082 for the advanced setup. A quality of 61087
means that the solution roughly violates 60 hard
constraints, while at 23082 only 22 hard constraints are
violated.
 The next step was to test the effectiveness of the
domain specific hill climbing operators described in the
previous section. For this reason four (4) more simulation
experiments were conducted. Each experiment
incorporated one of the four domain specific operators.
Again 10 runs were executed for each experiment and each
time the results were compared to the best-so-far results.
When an operator was found to enhance the performance
of the GA optimizer, it was adopted. The simulation results
for these operators are shown in Table VI.

TABLE VI
SIMULATION RESULTS FOR DOMAIN SPECIFIC OPERATORS

Operator Mean Qual. Best Qual. Worst Qual.
Change Day 20978 14568 29047
Fix Teacher 18286 12533 29047
Fix Room 13462 9577 23035
Fix Day 7056 3107 11606

 As it is clear from Table VI, each one of the four
domain specific operators enhances the performance of the
GA optimizer and thus, all four operators were adopted in
the final scheme. The domain specific operators managed
to evolve the best overall solution from the value of 23082
for the advanced setup, down to the value of 3107.
 The optimal solution quality of 3107 can be analyzed
into two parts:
1. Hard constraints violation part, which equals to 2000
2. Soft constraints violation part, which equals to 1107
 The value of 2000 for the first part means that 2 hard
constraints are violated at the optimal solution. The value
of 1107 for the second part means that all soft constraints
are fully satisfied and that gaps within the rooms’ and
teachers’ schedules are adequately minimized.
 The next step was to encode and evaluate a man-made
solution for the same timetable problem that was already
available. The man-made solution was evaluated through
the same fitness function that was also used for the GA
optimizer. The comparative results of the man-made
solution and the GA solution are shown in Table VII.

TABLE VII
MAN-MADE AND GA PRODUCED SOLUTIONS ANALYZED AND COMPARED

Feature Man-made
solution

GA produced
solution

Fitness 1294 3107
Objective value 1294 1107
Penalty value 0 2000

Hard constr viol. # 0 2
Soft constr viol. # 0 0
Room hour gaps 94 5

Teacher hour gaps 102 1

where “objective value” is the part of the fitness value
attributed to the violation of soft constraints (objectives),
“penalty value” is the part of the fitness value attributed to
hard constraints, “room hour gaps” is the total number of
hours within the rooms’ schedules during which the rooms
are unoccupied, and “teacher hour gaps” is the total
number of hours within each teacher’s schedule during
which the teacher does not have a class assignment.

As can be clearly seen from Table VII, the GA
optimizer does not manage to satisfy all hard constraints,
although it comes very close to achieving it, by producing
a solution with only 2 violating constraints. On the other
hand it is also evident that the GA produced solution
satisfies soft constraints better than the man-made one. The
GA solution scores an objective value of 1107 compared to
1294 of the man-made solution. The value of 1107
corresponds to only 5 “room hour gaps” and only 1
“teacher hour gap” compared to 94 and 102 of the man-
made solution respectively. It seems like the man-made
solution was the outcome of a focused effort to satisfy hard
constraints, while soft constraints haven’t enjoyed much
attention. On the other hand the GA’s solution is well-
developed concerning soft constraints but fails to be 100%
valid.

V. CONCLUSIONS

 In this paper an advanced GA implementation has been
presented for solving university course timetabling
problems. The GA method proposed uses an indirect
representation featuring event allocation priorities, and
invokes a “timetable builder” routine for constructing the
complete timetable. It also incorporates a number of
standard and domain specific operators to enhance its
search efficiency. The GA implementation has been
applied on a real world university course timetabling
problem, for which man-made solutions were also
available. It has been shown through extensive simulation
experiments, that the incorporation of certain combinatorial
and domain specific operators can significantly enhance
the search efficiency of the evolutionary algorithm.

Direct comparison of the GA-produced solutions with
the man-made one shows that, although the evolutionary
method does not manage to satisfy all hard constraints of
the problem, it achieves a significantly better score in
satisfying soft constraints and, therefore, its performance
can be characterized as promising. GA’s inability to satisfy
all hard constraints may be attributed to the difficulty of the
specific problem and to the limited resources (5000
generations) it used during the experimental simulations.

Of course more simulations are needed in order to
develop a more efficient version of the proposed method
that will be able to produce solutions with zero hard
constraint violations. Moreover, in order to test the
efficiency and robustness of the proposed method, it should
be applied and tested on more real world timetabling
problems. Another direction for further research is the
adaptation of the method for solving university exam

timetabling problems, or other timetabling and scheduling
problems.

REFERENCES
[1] D. Abramson, “Constructing school timetables using simulated

annealing: sequential and parallel algorithms,” Management Science,
37(1), January 1991, pp. 98-113

[2] P. Adamidis and P. Arapakis, “Evolutionary Algorithms in Lecture
Timetabling,” Proceedings of the 1999 IEEE Congress on
Evolutionary Computation (CEC ’99), IEEE, 1999, pp. 1145-1151.

[3] S.C. Brailsford, C.N. Potts and B.M. Smith, “Constraint Satisfaction
Problems: Algorithms and Applications,” European Journal of
Operational Research, vol 119, 1999, pp. 557-581.

[4] E. K. Burke and J. P. Newall, "A New Adaptive Heuristic Framework
for Examination Timetabling Problems," University of Nottingham,
Working Group on Automated Timetabling, TR-2002-1
http://www.cs.nott.ac.uk/TR-cgi/TR.cgi?tr=2002-1

[5] M.W. Carter, “A Survey of Practical Applications of Examination
Timetabling Algorithms,” Operations Research vol. 34, 1986, pp.
193-202.

[6] M.W. Carter and G. Laporte, “Recent Developments in Practical
Course Timetabling,” In: Burke, E., Carter, M. (Eds.), The Practice
and Theory of Automated Timetabling II: Selected Papers from the
2nd Int'l Conf. on the Practice and Theory of Automated Timetabling,
Springer Lecture Notes in Computer Science Series, Vol. 1408, 1998,
pp. 3-19.

[7] A. Colorni, M. Dorigo, and V. Maniezzo. “Genetic algorithms - A
new approach to the timetable problem,” In Lecture Notes in
Computer Science - NATO ASI Series, Vol. F 82, Combinatorial
Optimization, (Akgul et al eds), Springer-Verlag, 1990, pp. 235-239.

[8] A. Hertz, “Tabu search for large scale timetabling problems,”
European journal of operations research, vol. 54, 1991, pp. 39-47.

[9] S.A. Kazarlis, “Micro-Genetic Algorithms As Generalized Hill-
Climbing Operators for GA Optimization of Combinatorial
Problems – Application to Power Systems Scheduling”, Proceedings
of the the 4th Conference on Technology and Automation, October
2002, Thessaloniki, Greece (Dept.of Automation, A.T.E.I. of
Thessaloniki, Greece), pp. 300-305.

[10] S.A. Kazarlis, A.G. Bakirtzis, V. Petridis, “A Genetic Algorithm
Solution to the Unit Commitment Problem,” IEEE Transactions on
Power Systems, Vol. 11, No. 1, February 1996, pp. 83-92.

[11] S.Kazarlis, S.Papadakis, J.Theocharis and V.Petridis, "Micro-Genetic
Algorithms as Generalized Hill Climbing Operators for GA
Optimization," IEEE Transactions on Evolutionary Computation, Vol.
5, No. 3, June 2001, pp. 204-217.

[12] B. Paechter, A. Cumming, M.G.Norman, and H. Luchian, “Extensions
to a memetic timetabling system,” In E.K. Burke and P.M. Ross, eds.,
Proceedings of the 1st International Conference on the Practice and
Theory of Automated Timetabling, 1995.

[13] V. Petridis, S. Kazarlis and A. Bakirtzis, “Varying Fitness Functions
in Genetic Algorithm Constrained Optimization: The Cutting Stock
and Unit Commitment Problems,” IEEE Transactions on Systems,
Man, and Cybernetics, Vol. 28, Part B, No. 5, October 1998, pp. 629-
640.

[14] A. Schaerf, “A Survey of Automated Timetabling,” Artificial
Intelligence Review, vol 13 (2), 1999, 87-127.

[15] Arabinda Tripathy, “A lagrangian relaxation approach to course
timetabling,” Journal of the Operational Research Society, vol. 31,
1980, pp. 599-603

[16] G.M. White and P.W. Chan, “Towards the Construction of Optimal
Examination Timetables,” INFOR 17, 1979, p.p. 219-229.

[17] A. Wren, “Scheduling, Timetabling and Rostering – A Special
Relationship?,”, in The Practice and Theory of Automated
Timetabling: Selected Papers from the 1st Int'l Conf. on the Practice
and Theory of Automated Timetabling, Burke, E., Ross, P. (Eds.)
Springer Lecture Notes in Computer Science Series, Vol. 1153, 1996,
pp. 46-75.

