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 Abstract – Timetabling problems together with 
scheduling ones constitute a class of difficult to solve 
combinatorial optimization problems that lack analytical 
solution methods. As such, these problems have attracted 
researchers from a number of disciplines, like Operations 
Research  and Artificial  Intelligence, who have proposed a 
number of methods for solving them. In this paper we present 
a method based on Genetic Algorithms (GAs), to solve 
university course timetabling problems. This method 
incorporates GAs using an indirect representation based on 
event priorities, Micro-GAs and heuristic local search 
operators in order to tackle a real world timetabling problem. 
The problem on which the method is applied and tested is a 
real case and comes from a Technological Educational 
Institute of Greece. The GA solution is compared to the man-
made one produced by the institute’s staff and the 
comparative results are discussed. 
 
 Index Terms – Timetabling, Genetic Algorithms, Micro 
Genetic Algorithms, Local Search Operators, Combinatorial 
Optimization. 
 

I.  INTRODUCTION 

 According to A. Wren [17]: “Timetabling is the 
allocation, subject to constraints, of given resources to 
objects being placed in space time, in such a way as to 
satisfy as nearly as possible a set of desirable objectives.” 
Real timetabling problems have many forms like 
educational timetabling (course and exam), employee 
timetabling, timetabling of sports events, timetabling of 
transportation means, etc. Timetabling problems as well as 
scheduling problems, define a class of hard-to-solve 
constrained optimization problems of combinatorial nature. 
Such problems are mainly classified as constraint 
satisfaction problems [3], where the main goal is to satisfy 
all problem constraints, rather than optimizing a number of 
objectives. At present, science has no analytical solution 
method for all problem cases of this category, other than 
exhaustive search, which however cannot be applied but 
only to toy problems, due to the immense search spaces of 
real problem cases. 

Automated timetabling, on the other hand, is a task of 
great importance as it can save a lot of man-hours work, to 
institutions and companies, and provide optimal solutions 
with constraint satisfaction within minutes, that can boost 
productivity, quality of education, quality of services and 
finally quality of life. However, large-scale timetables, 
such as university timetables, may need great effort and 
many hours of work spent, by a qualified person or a team, 

in order to produce high quality timetables with optimal 
constraint satisfaction and optimization of the timetable’s 
objectives at the same time. 
 In this paper we focus on university timetabling 
problems that exist in two forms: course and exam 
timetabling. Within the scope of this work we focus only 
on university course timetabling problems. 
 A large number of diverse methods have been already 
proposed in the literature for solving timetabling problems. 
These methods come from a number of scientific 
disciplines like Operations Research, Artificial 
Intelligence, and Computational Intelligence [1, 4, 8, 12, 
14, 15] and can be divided into four categories: 
1) Sequential Methods that treat timetabling problems as 
graph problems. Generally, they order the events using 
domain-specific heuristics and then assign the events 
sequentially into valid time slots in such a way that no 
constraints are violated for each time slot. [5]. 
2) Cluster Methods, in which the problem is divided into a 
number of event sets. Each set is defined so that it satisfies 
all hard constraints. Then, the sets are assigned to real time 
slots to satisfy the soft constraints as well [16]. 
3) Constraint Based Methods, according to which a 
timetabling problem is modeled as a set of variables 
(events) to which values (resources such as teachers and 
rooms) have to be assigned in order to satisfy a number of 
constraints [3],  and 
4) Meta-heuristic methods, such as genetic algorithms 
(GAs), simulated annealing, tabu search, and other 
heuristic approaches, that are mostly inspired from nature, 
and apply nature-like processes to solutions or populations 
of solutions, in order to evolve them towards optimality [1, 
2, 7, 8, 12]. 
 GAs have been used for solving timetabling problems 
since 1990 [7]. Since then, the literature has hosted a large 
number of papers presenting evolutionary methods and 
applications on such problems with significant success [6]. 
 In this paper we present an advanced GA based 
method for solving university course timetabling problems. 
This method uses an indirect representation based on event 
priorities that is fully described in the next section. It also 
uses a number of advanced local search operators, 
including the Micro-GA combinatorial hill-climbing 
operator, in order to avoid local optima, fulfill constraints   
and discover optimal solutions efficiently. 
 The proposed method is applied to a real-world 
university course timetabling problem that comes from the 
Technological Educational Institute of Serres, Greece, for 



which a man made solution was also available, and has 
been used to compare the results of the GA method. 
 The paper is organized as follows: Section II analyzes 
university course timetabling and the specific real case that 
is used as a benchmark. Section III presents the advanced 
GA method and all advanced operators used by it. Section 
IV presents the simulation results and finally conclusions 
are presented in Section V.  
 

II.  UNIVERSITY COURSE TIMETABLING 

 In general a university course timetabling problem 
consists in finding the exact time allocation within a 
limited time period (e.g. a week), of a number of events 
(courses-lectures) and also assign to them a number of 
resources (a teacher, a room, etc.) in such a way that a 
number of constraints are satisfied. Usually courses are 
organized in a number of semesters (e.g. 8). The 
constraints that have to be satisfied by a timetable are 
usually divided into two categories: hard constraints and 
soft ones. 
 Hard constraints are those constraints that must be 
rigidly fulfilled. Examples of such constraints are: 
- No resource (teacher, student, room, etc.) may be 
assigned to different events at the same time. 
- Events of the same semester must not be assigned at the 
same time slot (in order for the students of the semester to 
be able to attend all semester lessons). 
- Assigned resources to an event (e.g. teachers) must 
belong to the set of valid resources for that event (e.g. only 
specific teachers can teach a specific course). 
 On the other hand, soft constraints are those that it is 
desirable to be fulfilled to the possible extent, but are not 
fully essential for a valid solution. Therefore, soft 
constraints can also be seen as optimization objectives for 
the search algorithm. Examples of such constraints are: 
- Schedule an event within a particular “window” of the 
whole period (e.g. on evenings). 
- Minimize time gaps or travel times between adjacent 
lectures of the same teacher. 

The specific problem we used in this work comes from 
the Technological Educational Institute of Serres, Greece, 
and involves the weekly scheduling of all courses of the 
Department of Informatics & Communications of this 
Institute. The specifications of this problem are shown in 
Table I. 

TABLE I 
TIMETABLING PROBLEM SPECIFICATIONS 

No. Description Quantity
1 No of courses 71 
2 No of different lectures 187 
3 No of scheduled events 192 
4 No of semesters 7 
5 Lecture types (theory / lab practice) 2 
6 No of teachers 82 
7 No of rooms 17 
8 No of days 5 
9 No of time-periods (hours) within a day 13 

In Table I the value of “13” for the field “time-periods 
within a day” just denotes the possible “starting periods” of 
each class (from 8:00 am to 20:00 pm) and not complete 
time slots that can accommodate equal number of 
consequent classes. As different lectures have different 
durations (2..4 hours), the real number of consequent 
classes that can be scheduled within a day depends on the 
specific set of classes chosen and their durations. 

The hard constraints considered for this problem are 
shown in Table II. 

TABLE II 
HARD CONSTRAINTS OF THE TIMETABLING PROBLEM  

No Hard Constraint 
1 No resource (teacher or room) may be assigned to 

different events at the same time 
2 Events of the same semester must not be assigned 

at the same time slot when both events are of type 
“theory” or when one event is “theory” and one 
event is “lab practice”. Same-semester events can 
run concurrently only if they are both of type “lab 
practice”, as for each course 4..6 “lab practice” 
classes are scheduled within the week, each 
attended by a different group of students. 

3 There is a maximum number of time periods per 
day (13), that may not be exceeded 

4 Each lecture may be held in a room belonging to a 
specific set of valid rooms for the lecture 

5 Each room may have its own availability schedule  
6 Each lecture may be assigned to a teacher that 

belongs to a specific set of teachers that can deliver 
the lecture. 

7 Specific lectures must be rigidly assigned to 
specific teachers. 

8 Classes of type “theory” need one teacher while 
classes of type “lab practice” need 2 teachers. 

 

 The soft constraints considered for this problem are 
shown in Table III. 

TABLE III 
SOFT CONSTRAINTS OF THE TIMETABLING PROBLEM  

No Soft Constraint 
1 Every teacher has his/her own availability schedule 

or submits a plan with desirable time periods that 
suits him/her best 

2 Every teacher has a minimum and a maximum limit 
of weekly work-hours 

3 If a class is broken in more than one non-
contiguous lectures within a week, a specific 
number of days must be left between these lectures. 

4 Minimize the travel time of teachers and students 
between rooms within the campus 

5 Minimize the time gaps within the schedule of each 
teacher 

6 Minimize the time gaps within the schedule of each 
room 

 
There are three reasons for selecting the specific case 

as a benchmark. Firstly because the authors had access to 
the real constraints considered for developing the man-



made solution to the problem, in order to set-up the 
timetabling problem on a realistic basis. Secondly because 
the authors had easy access to man-made solutions for this 
problem, and could easily make comparisons. The third 
reason was the fact that the specific problem is not an easy 
one to solve, and thus can serve as a demanding benchmark 
for developing an efficient optimization algorithm. 

The difficulty of the chosen problem case is justified 
by the following facts: 
a) The problem has two types of lectures (“theory” and 
“lab practice”) with diverse characteristics and constraints.  
b) The timetable has too few rooms (only 17) that have to 
accommodate all taught lessons, a fact that makes the 
timetable very tight. Some of the rooms are laboratories 
designed for “lab practice” classes, and others are lecture 
rooms. In practice, all 9 laboratories are occupied by 
classes, for the full number of periods per day and all five 
days with only minor time-gaps. 
c) Specific classes may be taught in specific rooms. Theory 
classes can be assigned to any of the 8 lecture rooms, but 
“lab” classes must be assigned to specific “lab” rooms. 
d) There is a large number of teachers, each of which has 
his/her own minimum and maximum hour limits per week, 
and the ability to teach in a limited set of classes. 

To give a metric of how constrained the problem is we 
could simply mention that 5 of the rooms with 135 
theoretical time slots (13 hours per day / 2.4 avg. hours per 
class x 5 days x 5 rooms) have to accommodate 110 events, 
and of course there are certain constraints as of which class 
can be held in which room that further reduce the possible 
room (and time-slot) choices for every class. 
 

III.  THE ADVANCED GA IMPLEMENTATION 

In order to solve the timetabling problem described in 
the previous section, we have developed an optimization 
method based on Genetic Algorithms (GAs) that 
incorporate a number of advanced techniques and domain 
specific local search operators.  

The first thing to consider was the representation 
method to use in order to encode a timetable solution into 
an encoded form or chromosome, suitable for applying the 
genetic operators. According to the literature two different 
approaches are used: “direct” and “indirect” ones.  

A “direct” representation [2] directly encodes all event 
attributes (day, time slot, teacher, room, etc.) for all events. 
Thus, in these cases the GA has to decide for all timetable 
parameters and deliver the complete and constraint free 
schedule. Following this principle results in a very large 
search space where solutions that satisfy all constraints 
seem like “needles in a haystack”. Moreover, directly 
encoded solutions, that undergo the genetic operators, 
frequently result in invalid solutions, that have to be 
“repaired” or handled in some manner. 

In “indirect” representations [12] the encoded solution 
(chromosome) usually represents an ordered list of events, 
which are placed into the timetable according to some pre-
defined method, or “timetable builder”. The timetable 

builder can use any combination of heuristics and local 
search to place events into the timetable, while observing 
the problem’s constraints. 

For the GA implementation of this work we have 
chosen an “indirect” representation that encodes 4 fields 
for each event into the chromosome:  

a) Day to allocate the event 
b) Teachers (1 or 2) to assign to the event 
c) Room where the event will be held 
d) Priority to allocate the event within the day. 

Of course all fields are first encoded as integers and then 
entered into the chromosome as binary numbers. 

When GA produces such a solution, it first decodes it 
to gain these four fields for every event in the schedule. 
Then it invokes a “timetable builder” routine called 
“timetabler” that works as follows: 
1. It separates events into clusters, one for each day. 
2. For every cluster, it sorts the events according to their 
“priority” values and in ascending order (small values 
mean high priority and are placed first). 
3. It takes the first event in the cluster (higher priority), 
marks it as taken, and tries to place it into the schedule of 
the particular day. 
4. Starting from time slot 1 it places the event and checks if 
any constraints are violated. If not the allocation is fixed 
and the algorithm moves on to the next event in the cluster. 
5. If any constraints are violated, it tries to allocate the 
event into subsequent time periods, until all constraints are 
satisfied. 
6. If there exists no time period for which all constraints 
are satisfied, the event is marked to violate the “maximum 
time periods per day exceeded” constraint (constraint no 3 
from Table II). 
7. The algorithm continues with the next event in the list. 
When all events have been processed, the “timetabler” 
moves to the next cluster (day), and this is repeated for all 
days in the schedule. 
 A similar algorithm has been proposed in [4] where a 
non-evolutionary heuristic algorithm is proposed for exam 
timetabling problems. All events are sorted according to a 
“measure of difficulty” figure that is dynamically adapted 
during the run, and difficult to schedule events are handled 
first. However, in this paper’s approach, the allocation 
priority of events is determined genetically. 
 The “timetabler” manages to satisfy hard constraints 
1,2,5,7 and 8 of Table II, while all other constraints are left 
to be satisfied by the GA. 
 After “timetabler” has produced the timetable, it is 
evaluated through a fitness function that analyzes the 
solution and calculates its overall fitness value as a sum of 
weighted scores and penalties for all constraints (hard and 
soft) as well as objectives. The fitness function used in this 
GA implementation is of the form: 
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where x is the timetable under evaluation, Pi
soft (x) is a 

measure of violation of the ith soft constraint, Pi
hard (x) is a 

measure of violation of the ith hard constraint, wi
s is a 



weight factor for the ith soft constraint, and wi
h is a weight 

factor for the ith hard constraint. This function must be 
minimized. 

From the above it is clear that, some of the problem’s 
constraints are handled by the “timetabler” during the 
construction of the complete solution from the genetically 
produced abstract solution. The rest of the constraints are 
handled using a penalty function that is composed as a 
weighted sum of penalty terms, each of which corresponds 
to a measure of violation of each constraint. Moreover, soft 
constraints could also be seen as optimization objectives 
that have to be optimized to the possible extent. 

The next thing to consider was the blend of genetic 
operators to incorporate into the GA method, in order to 
achieve maximum optimization performance. To do this 
we first considered standard operators as well as general 
purpose combinatorial operators. The operators and their 
parameters considered are shown in Table IV. 

TABLE IV 
STANDARD OPERATORS AND PARAMETERS CONSIDERED 

No Operator Parameter 
1.1 Crossover 20-point 
1.2 Crossover Uniform 
2.1 Mutation prob=0.005
2.2 Mutation prob=0.01 
3.1 Window Mutation operator prob=0.1 
3.2 Window Mutation operator prob=0.3 
4.1 Swap Chromosome operator prob=0.1 
4.2 Swap Chromosome operator prob=0.3 
5.1 Swap Bit operator prob=0.1 
5.2 Swap Bit operator prob=0.3 
6.1 Swap Window operator prob=0.1 
6.2 Swap Window operator prob=0.3 
7.1 Random Genotype operator prob=0.1 
7.2 Random Genotype operator prob=0.3 
8.1 Mutate Chromosome operator prob=0.1 
8.2 Mutate Chromosome operator prob=0.3 
9 Bit Swap-Mutate Hill Climbing oper. prob=0.5 

10 Window Swap Hill Climbing oper. prob=0.5 
11.1 Varying Fitness Function Linear 
11.2 Varying Fitness Function Square 
11.3 Varying Fitness Function Exponential
12.1 GA Population 100 
12.2 GA Population 200 
13 MicroGA Combinatorial Hill Climb. prob=1.0 

Operators 3 (3.1) through 10 are described in [10]. The 
Varying Fitness Function technique is described in [13]. 
Operator 13 is described in [9, 11]. 
 The standard GA setup employed Roulette Wheel 
Parent Selection, population of 50 solutions, standard 5-
point crossover operator, bit mutation operator with a 
probability of 0.001 per bit, elitism, replacement of the 
whole population of parents with offspring, fitness scaling 
and a generation limit of 5000 generations. The operators 
(and their parameters) of Table IV where tested in order to 
decide whether to adopt them or not in the final algorithm. 

The corresponding simulation results are presented in 
section IV. 
 Due to the specific nature and difficulty of the problem 
we have also considered domain specific hill climbing 
operators that are applied only to the best solution of each 
generation. These operators are: 
a) Change Day Hill Climbing Operator  
 This operator selects an event at random and changes 
its encoded day-of-allocation field, assigning to it all day 
values sequentially, except from the original day value. 
Every time the resulting timetable is evaluated and if it 
scores better than the original then the change is kept, 
otherwise the old day value is restored. 
b) Fix Teacher Hill Climbing Operator 
 This operator finds all events with teacher-class 
constraint violations (constraint 6 of Table II) and selects 
one such event at random. Then it changes the encoded 
teacher-to-allocate field, assigning to it all valid teachers 
sequentially, except from the original one. Every time the 
resulting timetable is evaluated and if it evaluates better 
than the original, then the change is kept, otherwise the old 
teacher value is restored. 
c) Fix Room Hill Climbing Operator 
 This operator finds all events with room-class 
constraint violations (constraint 4 of Table II) and selects 
one such event at random. Then it changes the encoded 
room-to-allocate field, assigning to it all valid rooms 
sequentially, except from the original one. Every time the 
resulting timetable is evaluated, and if it evaluates better 
than the original, then the change is kept, otherwise the old 
room value is restored. 
d) Fix Day Hill Climbing Operator 
 This operator finds all events that are allocated beyond 
the maximum time-periods-per-day limit (constraint 3 of 
Table II), and selects one such event at random. Then it 
changes the encoded day-of-allocation field, assigning to it 
all day values sequentially, except from the original one. 
Every time the resulting timetable is evaluated, and if it 
evaluates better than the original, then the change is kept, 
otherwise the old day value is restored. 

It is obvious that these four operators are specifically 
designed to give the GA the ability to fulfill all three hard 
constraints (constraints 3,4,6 of Table II) that are not 
satisfied automatically by the “timetabler”. The 
effectiveness of these operators has been also tested and 
simulation results are reported in section IV. 
 

IV.  SIMULATION RESULTS 

 In order to decide which operators of Table IV to 
adopt, one should run simulations for all parameter 
combinations. However the number of combinations 
(nearly 420,000) is prohibitive for exhaustive evaluation. 
Thus, we have applied an “elitism-like” technique in order 
to reduce the number of simulations needed. This 
technique goes as follows: 
 First we conducted a simulation experiment for the 
standard GA setup described in the previous section. The 



experiment consisted of 10 independent runs. After the 
completion of the runs we calculated three statistical 
figures: the overall best solution quality achieved, the 
overall worst solution quality achieved and the average 
solution quality achieved, throughout the 10 runs. Then, 
we added the first operator setup of Table IV to the 
standard GA setup and another simulation round of 10 runs 
was launched. The results were compared to those of the 
standard setup via the three statistical figures mentioned 
above. If the new setup had better performance than the 
original, then the new setup was adopted as the “best-so-
far” setup. Otherwise the tested setup was ignored. With 
this method only 25 simulations of 10 runs each are needed 
to evaluate the operators (and their parameters) of Table 
IV. Of course the validity of this method is based on the 
assumption that the operators are more or less independent 
of each other, a fact that is pretty much close to truth, and 
is also justified by experimental results. 
 The simulation results for the operators of Table IV are 
shown in Table V, where all adopted setups are marked 
with two asterisks “*” and are displayed in bold typeface. 

TABLE V 
SIMULATION RESULTS FOR STANDARD OPERATORS AND PARAMETERS 

Setup Mean Qual. Best Qual. Worst Qual.
Standard 74192 61087 97073 

1.1 72387 52087 91080 
* 1.2 * 67980 60102 76077 

2.1 72482 57079 83072 
2.2 81798 65113 93120 
3.1 61486 50092 76090 

* 3.2 * 61596 44118 78093 
* 4.1 * 66387 42095 83094 

4.2 65190 52094 76094 
5.1 70192 56091 83101 
5.2 65991 53101 83085 
6.1 65992 54092 88094 
6.2 65288 56094 76072 
7.1 71793 61117 80096 
7.2 76979 52102 89087 

* 8.1 * 53590 45093 65079 
8.2 59789 45097 77103 
9 68581 46085 92080 

10 58389 48098 71101 
11.1 50370 39078 67089 

* 11.2 * 52359 37093 63036 
11.3 57796 47764 69626 
12.1 53388 39084 88098 

* 12.2 * 42089 26104 59082 
* 13 * 29882 23082 35078 

From Table V it is clear that the operators that exhibited 
best performance and were adopted in the GA scheme are: 
1. Uniform Crossover 
2. Window Mutation operator with a probability of 0.3 
3. Swap Chromosome operator with a probability of 0.1 
4. Mutate Chromosome operator with a probability of 0.1 
5. Varying fitness Function with square increase. 
6. GA population of 200 genotypes, and 

7. Micro GA combinatorial hill climbing operator. 
By adding these operators to the standard GA scheme 

we have managed to evolve the best overall solution from 
the value of 61087 for the standard setup, down to the 
value of 23082 for the advanced setup. A quality of 61087 
means that the solution roughly violates 60 hard 
constraints, while at 23082 only 22 hard constraints are 
violated. 
 The next step was to test the effectiveness of the 
domain specific hill climbing operators described in the 
previous section. For this reason four (4) more simulation 
experiments were conducted. Each experiment 
incorporated one of the four domain specific operators. 
Again 10 runs were executed for each experiment and each 
time the results were compared to the best-so-far results. 
When an operator was found to enhance the performance 
of the GA optimizer, it was adopted. The simulation results 
for these operators are shown in Table VI. 

TABLE VI 
SIMULATION RESULTS FOR DOMAIN SPECIFIC OPERATORS 

Operator Mean Qual. Best Qual. Worst Qual. 
Change Day 20978 14568 29047 
Fix Teacher 18286 12533 29047 
Fix Room 13462 9577 23035 
Fix Day 7056 3107 11606 

 As it is clear from Table VI, each one of the four 
domain specific operators enhances the performance of the 
GA optimizer and thus, all four operators were adopted in 
the final scheme. The domain specific operators managed 
to evolve the best overall solution from the value of 23082 
for the advanced setup, down to the value of 3107. 
 The optimal solution quality of 3107 can be analyzed 
into two parts:  
1. Hard constraints violation part, which equals to 2000 
2. Soft constraints violation part, which equals to 1107 
 The value of 2000 for the first part means that 2 hard 
constraints are violated at the optimal solution. The value 
of 1107 for the second part means that all soft constraints 
are fully satisfied and that gaps within the rooms’ and 
teachers’ schedules are adequately minimized. 
 The next step was to encode and evaluate a man-made 
solution for the same timetable problem that was already 
available. The man-made solution was evaluated through 
the same fitness function that was also used for the GA 
optimizer. The comparative results of the man-made 
solution and the GA solution are shown in Table VII. 

TABLE VII 
MAN-MADE AND GA PRODUCED SOLUTIONS ANALYZED AND COMPARED 

Feature Man-made 
solution 

GA produced 
solution 

Fitness 1294 3107 
Objective value 1294 1107 
Penalty value 0 2000 

Hard constr viol. # 0 2 
Soft constr viol. # 0 0 
Room hour gaps 94 5 

Teacher hour gaps 102 1 



where “objective value” is the part of the fitness value 
attributed to the violation of soft constraints (objectives), 
“penalty value” is the part of the fitness value attributed to 
hard constraints, “room hour gaps” is the total number of 
hours within the rooms’ schedules during which the rooms 
are unoccupied, and “teacher hour gaps” is the total 
number of hours within each teacher’s schedule during 
which the teacher does not have a class assignment. 

As can be clearly seen from Table VII, the GA 
optimizer does not manage to satisfy all hard constraints, 
although it comes very close to achieving it, by producing 
a solution with only 2 violating constraints. On the other 
hand it is also evident that the GA produced solution 
satisfies soft constraints better than the man-made one. The 
GA solution scores an objective value of 1107 compared to 
1294 of the man-made solution. The value of 1107 
corresponds to only 5 “room hour gaps” and only 1 
“teacher hour gap” compared to 94 and 102 of the man-
made solution respectively. It seems like the man-made 
solution was the outcome of a focused effort to satisfy hard 
constraints, while soft constraints haven’t enjoyed much 
attention. On the other hand the GA’s solution is well-
developed concerning soft constraints but fails to be 100% 
valid. 

V.  CONCLUSIONS 

 In this paper an advanced GA implementation has been 
presented for solving university course timetabling 
problems. The GA method proposed uses an indirect 
representation featuring event allocation priorities, and 
invokes a “timetable builder” routine for constructing the 
complete timetable. It also incorporates a number of 
standard and domain specific operators to enhance its 
search efficiency. The GA implementation has been 
applied on a real world university course timetabling 
problem, for which man-made solutions were also 
available. It has been shown through extensive simulation 
experiments, that the incorporation of certain combinatorial 
and domain specific operators can significantly enhance 
the search efficiency of the evolutionary algorithm.  

Direct comparison of the GA-produced solutions with 
the man-made one shows that, although the evolutionary 
method does not manage to satisfy all hard constraints of 
the problem, it achieves a significantly better score in 
satisfying soft constraints and, therefore, its performance 
can be characterized as promising. GA’s inability to satisfy 
all hard constraints may be attributed to the difficulty of the 
specific problem and to the limited resources (5000 
generations) it used during the experimental simulations. 

Of course more simulations are needed in order to 
develop a more efficient version of the proposed method 
that will be able to produce solutions with zero hard 
constraint violations. Moreover, in order to test the 
efficiency and robustness of the proposed method, it should 
be applied and tested on more real world timetabling 
problems. Another direction for further research is the 
adaptation of the method for solving university exam 

timetabling problems, or other timetabling and scheduling 
problems. 
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