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Abstract - Fuzzy Cognitive Maps (FCMs) have found
many applications in social -financial -political problems. In
this paper we propose a method of FCM operation, which can
be used to represent and control any real system, including
traditional electro-mechanical systems. In the proposed
approach the FCM reaches its equilibrium point using direct
feedback from the node values of the real system and the
limitations imposed by the control objectives for the node
values of the system. To avoid intensive interference of the
updating mechanism with the real system, a technique is
proposed which stores the previously encountered operational
situations in a fuzzy if-then rule database. The proposed
methodology is tested by simulating the operation of a hydro-
electric plant.

Index Terms - Fuzzy Cognitive Maps, Hebbian rule, State
feedback, Weight Updating, Fuzzy Logic Rules.

[. INTRODUCTION

The scientific community was placed under the
obligation of giving solutions to problems the settlement of
which seemed rather difficult the years before. Fuzzy
Cognitive Maps (FCM) can model dynamical complex
systems that change with time following nonlinear laws [1].
FCMs use a symbolic representation for the description and
modeling of the system. In order to illustrate different
aspects in the behavior of the system, a fuzzy cognitive map
is consisted of nodes with each node representing a
characteristic of the system. These nodes interact with each
other showing the dynamics of the system in study. An
FCM integrates the accumulated experience and knowledge
on the operation of the system, as a result of the method by
which it is constructed, i.e., using human experts who know
the operation of system and its behavior.

Fuzzy cognitive maps have already been used to model
behavioral systems in many different scientific areas. For
example, in political science [2], fuzzy cognitive maps were
used to represent social scientific knowledge and describe
decision-making methods [3], [4], [5]. Kosko enhanced the
power of cognitive maps considering fuzzy values for their
nodes and fuzzy degrees of interrelationships between
nodes [6], [7]. After this pioneering work, fuzzy cognitive
maps attracted the attention of scientists in many fields and
they have been used in a variety of different scientific
problems. Fuzzy cognitive maps have been used for
planning and making decisions in the field of international
relations and political developments [3] and to model the
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behavior and reactions of virtual worlds. FCMs have been
proposed as a generic system for decision analysis [4], [8]
and as coordinator of distributed cooperative agents. Some
problems of electrical and mechanical engineering are also
placed in the fuzzy part of science and they have been
studied thoroughly enough the last years from a good many
of scientists. A large number of different methods have
occasionally been used in order to work out this kind of
problems. As shown in this paper, the FCM approach can
serve as a reliable approach for these problems too.

One open issue related to FCMs, is their operation in
close cooperation with the real system they describe. This
in turn implies that such an on-line interaction with the real
system might require changes in the weight
interconnections, which reflect the experts’ knowledge
about the node interdependence. This knowledge might not
be entirely correct or perhaps, the system has undergone
changes during its operation.

In this paper an FCM operation method is proposed,
which is in close interaction with the system it represents.
The FCM nodes are divided in control and reference nodes,
where control nodes represent control variables of the
system and reference nodes represent either variables with
constant values or variables with desired (goal) values. In
the proposed approach, the FCM reaches its equilibrium
point using direct feedback from the node values of the real
system and the limitations imposed by the reference nodes.
The interconnections weights are on-line adjusted during
this operation by using the Hebbian updating law, which
however uses system feedback. Moreover, the updating
procedure is further enhanced and accelerated by using
information from previous equilibrium points of the system
operation. This is achieved by dynamically building a
database, which, for each encountered operational situation
assigns a fuzzy if-then rule connecting the involved weight
and node values. The range of the node and weight
variables is dynamically partitioned to define appropriate
membership functions. This way, the weight updating using
system feedback gradually starts from values which are
closer to the desired ones and therefore the procedure is
significantly sped-up.

The paper is organized as follows: Section II gives a
short description of FCMs and their way of operation.
Section III introduces the proposed combined operation of
the FCM and the real system and presents the relevant



Hebbian rule to update interconnections weights. Section
IV presents the proposed approach for storing, in a fuzzy
representation, previous operational information of the
system and the speed-up of the updating procedure. The
presentation of the new approach is built by using a
simulation study of a hydro-electric power plant. The final
conclusions are given in Section V.

II. Fuzzy COGNITIVE MAPS REPRESENTATION AND
DEVELOPMENT

Fuzzy cognitive maps approach is a hybrid modeling
methodology, exploiting characteristics of both fuzzy logic
and neural networks theories and it may play an important
role in the development of intelligent manufacturing
systems. The utilization of existing knowledge and
experience on the operation of complex systems is the core
of this modeling approach. Experts develop fuzzy cognitive
maps and they transform their knowledge in a dynamic
cognitive map [9].

The graphical illustration of FCM is a signed directed
graph with feedback, consisting of nodes and weighted
interconnections. Nodes of the graph stand for the nodes
that are used to describe the behavior of the system and
they are connected by signed and weighted arcs
representing the causal relationships that exist among nodes
(Fig. 1). Each node represents a characteristic of the
system. In general it stands for states, variables, events,
actions, goals, values, trends of the system which is
modeled as an FCM [12]. Each node is characterized by a
number A;, which represents its value and it results from the
transformation of the real value of the system's variable, for
which this node stands, in the interval [0, 1]. It must be
mentioned that all the values in the graph are fuzzy, and so
weights of the interconnections belong to the interval
[-1, 1]. With the graphical representation of the behavioral
model of the system, it becomes clear which node of the
system influences other nodes and in which degree.

The most essential part in modeling a system using
FCMs, is the development of the fuzzy cognitive map itself,
the determination of the nodes that best describe the
system, the direction and the grade of causality between
nodes. The selection of the different factors of the system,
which must be presented in the map, will be the result of a
close-up on system's operation behavior as been acquired
by experts. Causality is another important part in the FCM
design, it indicates whether a change in one variable causes
change in another, and it must include the possible hidden
causality that it could exist between several nodes. The
most important element in describing the system is the
determination of which node influences which other and in
what degree. There are three possible types of causal
relationships among nodes that express the type of
influence from one node to the others. The weight of the
interconnection between node C; and node C; denoted by
Wi, could be positive (Wj; > 0) for positive causality or
negative (W; < 0) for negative causality or there is no
relationship between node Ci, and node C;, thus W;; = 0.
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Fig. 1: A simple fuzzy cognitive map

The causal knowledge of the dynamic behavior of the
system is stored inthe structure of the map and in
the interconnections that summarize the correlation
between cause and effect. The value of each node is
influenced by the values of the connected nodes with the
corresponding causal weights and by its previous value. So,
the value A; for each node C; is calculated by the following
rule [12]:
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between C; and C;,and f is a squashing function.

is the weight of the interconnection

Squashing functions:

1) f =tanh(x) maps the nodes values in [-1 , 1]
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values in [0, 1]. It also called sigmoid function. The second
function is the most common function which is used in
FCM’s.

by using c=1 we convert the nodes
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III. WEIGHT UPDATING USING SYSTEM FEEDBACK

In this section we will analyze the proposed method of
updating the interconnections weights of FCM taking into
account feedback node values from the real system. Using
the updated weights the FCM reaches a new equilibrium
point by means of equation (1). Some of the new node
values can be applied as control values to the real
system. One commonly used technique for updating
weights in FCMs is the Hebbian updating rule [10], [1],
[11]. In our approach the updating is made by using the
conventional Hebbian rule, which however, uses
measurements from the node values taken from the real



system. This way the updating of the weights reflects real
changes that have to be made in our knowledge about the

system, which is represented by the interconnection weights.

This situation is more apparent in cases where there exist
steady value nodes, which, in the real system, are not
affected by the values of the other nodes. In this case, if the
FCM convergence equation (1) is left to operate with
weight adjustments that do not take into account the steady
node values fact, then the equilibrium point will give node
values for the above mentioned nodes, which might be
different than the steady values, which in turn implies an
unrealistic point of operation for our system.

Let us, for example, analyze an FCM having one or
more nodes with constant values. This means that no human
action can intervene, in a mechanic way with this value.
Suppose that in the FCM of Fig. 2 nodes Cl and C2
cannot change their values. The values of these nodes
derive from the system that is examined. The table of
interconnection weights for this system is:

0 0 Wi3 W14 0 |
0 0 W23 0 W25
w=l0 0 0 W34 0
00 Wa3 0 0
00 W3 0 0 |

We see that columns 1 and 2 that concern nodes Cl
and C2 are zero. When applying equation (1) for node
value updating we have to consider the steady values of
nodes C1 and C2 by using a companion adjusting equation.
Thus, equation (1) is now replaced by the following two
equations:
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Fig. 2: FCM with steady state nodes
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where A is the node’s value, derived from the real

system. These values are either measured on-line or are
known beforehand as the steady nodes values of the above
example. In order to drive the FCM in a realistic
representation of the system and its control actions we have
to update the interconnection weights using these measured
node values from the real system. Based on the updated
weights, equations (1) and (2) will produce a new set of
node values which represent the control actions applied to
the real system. The procedure, which is depicted in Fig. 3,
is repetitively applied during the operation of the system.
The weights that are non zero are renewed according to the
Hebbian rule:
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where k is the number of iteration and a is the learning rate
(usually =0.1).

The procedure described in Fig. 3 uses repetitively
equations (2), (3), (4) and (5) to provide with an FCM,
which totally corresponds and cooperates with the real
system. The control nodes of the system (nodes C3, C4 and
C5 of Fig. 2) are now taking values which take into account
the steady node values (Cl1 and C2) and the weight
interconnections updated values.

IV. FuzzY REPRESENTATION OF PREVIOUS OPERATION
POINTS

The procedure described in the previous section
modifies our knowledge about the system by continuously
modifying the weight interconnections and consequently
the node values. During the repetitive updating operation
the procedure uses feedback from the system variables.
This means that in each iteration all the intermediate weight
and node values, some of which are control values, are fed
to the real system and its response is used to give the new
updating direction.
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Fig. 4: (a) Hydroelectric station, (b) A Fuzzy cognitive map
representing the hydroelectric factory shown in (a)

It is obvious that this procedure continuously “annoys”
the physical system, something that in many cases is
undesirable. In the sequence we propose a methodology
that alleviates this “annoyance” and speeds up the updating
procedure.

To make the method clear, we choose a simple
mechanical problem of a hydroelectric power station shown
in Fig. 4(a). The FCM representation of the system is
shown in Fig. 4 (b). We want to regulate the flow in the two
Hydro-generators (1 and 2), in order to comply with
possible power demands.

The system has one steady value node [River -reference
nodel], three control nodes [Valve 2 - node 4, Valve 3 -
node 6 and Valve | — node 2] and two simple operation
nodes [Tank 1 - node 3, Tank 2 - node 5]. One or more of
nodes 2, 3, 4, 5 and 6 values have to be regulated so that
hydro-generators 1 and 2 can receive the desired water flow
values.

Based on experts knowledge regarding the mechanics of
the system a representative weight matrix W is the
following:

0 -0.9539 0 0 0 0
0 0 0.7592 0 0 0
|0 06457 0 0.0729 0 0
imp |0 0 -0.598 0 0.7999 0
0 0 0 0.3519 0 0.2959
0 0 0 0 -0.4201 0

which, after applying equations (2) and (3), gives the
following FCM equilibrium node values.

A=[0.6 0.5592 0.6498 0.7402 0.7362 0.7183]

Suppose we want to drive nodes 3 and 5 to 0.652 and
0.7398 respectively. In this case we should adapt the
weights of the FCM using repetitively equations (2) — (5).
After 32 iterations we will find that the FCM accurately
describes the operation of the real system. The final W
matrix is:

0 —-0.9539 0 0 0 0
0 0 0.7696 0 0 0
0 0.4148 0 0.0914 0 0
W =
final | o 0 ~0.6138 0 0.8081 0
0 0 0 0.3818 0 0.3431
0 0 0 0 -04121 0

and A vector is:

A=[0.6 0.5655 0.652 0.7485 0.7398 0.7273]

To avoid running again so many iterations to compute
new node and weight values for other desired node values,
which might be close to the ones encountered above we
want to keep the weight and node information arisen from
the above equilibrium points. To do that we are storing the
node and weight dependencies in a fuzzy rule based
database.

For example, the fuzzy rule database, which is obtained
using the information from the two previous equilibrium
points, is resolved as follows:

Left hand side (if part)
steady state node node 3
1 1
If and
0 06 1 0 06498 0652 1
node 5
1
and
0 0.7362 0.7398 1



And right hand side (then part)

W12 W32
1 1
then and
mf1 A
0 0
-1 -0.9539 1 -1 0.4148 06457 1
W43
W23
, 1
and and ‘
: | :
A 0.7592 07696 1 -1 06138 0598 !
W34 W54
1 1 1
0 ] 0
-1 00729 0.0914 1 -1 03519 03818 1
W45 W65
1 1
and
and ‘ ‘
0 0
4 07999 0.8081 1 -1 -04201  -0.4121 1
W56
1
and :
0 mf1 §

-1 0.2959 0.3431 1

There are two rules related to the above two different
equilibrium situations:
Rule 1
if node 1 is mf1(0.6) and node 3 is mf1(0.6498) and
node 5 is mf1(0.7362)
then w12 is mfl and w32 is mfl and w23 is mfl and
w43 is mfl and w34 is mfl and w54 is mfl and
w45 is mfl and w65 is mfl and w56 is mfl

Rule 2
if node 1 is mf1(0.6) and node 3 is mf2(0.652) and
node 5 is mf2(0.7398)
then w12 is mfl and w32 is mf2 and w23 is mf2 and
w43 is mf2 and w34 is mf2 and w54 is mf2 and
w45 is mf2 and w65 is mf2 and w56 is mf2

The number and shape of the fuzzy membership
functions of the variables of both sides of the rules are
gradually modified as new desired equilibrium points
appear to the system during its operation. To add a new
triangular membership function in the fuzzy description of a
variable, the new value of the variable must differ from one
already encountered value more than a specified threshold.
The threshold comes usually as a compromise between the
maximum number of allowable rules and the detail in fuzzy
representation of each variable.

Suppose now that we want to drive node 3 to 0.76 and
node 5 to 0.766 by having the steady state node to 0.659.
We run the above fuzzy rules using the Mamdani min

implication and the Center of Area (COA) defuzzification
method. Then with only these two rules we come to the
following weight matrix values.

[0 —02701 0 0 0 0 |
0 0 0851 0 0 0
o o712 0 01021 0 0
"=lo 0 o634 o0 08467 0
0 0 0 04198 0 03542
0o o 0 0 -03671 0

4=[0.659 0.7436 0.7011 0.7592 0.7559 0.7308]

In the sequel we run equations (2) — (5), which after
only 8 iterations concludes to the FCM which accurately
describes the operation of the real system. The final W
matrix is:

0 -0.5674 0 0 0 0

0 0 0.9236 0 0 0
W 0 0.8834 0 —-0.0423 0 0

0 0 -0.4120 0 0.9162 0

0 0 0 0.2455 0 0.3751

0 0 0 0 -0.3042 0

and the equilibrium node values are
A=[0.659 0.7379 0.76 0.7023 0.7660 0.7355]

Thus, we have a significant number of iteration
reductions for reaching a new desired equilibrium point that
is “close” to an already encountered equilibrium situation.
To make the method operating sufficiently in a large range
of operational situations the designer has either to teach the
system in these situations off-line or to let the system gain
this knowledge on line through its operation.

V. CONCLUSIONS

In this paper a new method for weight updating in
FCMs using system feedback is proposed. So far, the
existing approaches were using the simple method of
weight updating without taking into account the feedback
from the real system. The diversity of the proposed method
lies in the fact that FCM reaches its equilibrium point using
direct feedback from the node values of the real system and
the limitations imposed by the reference nodes, which
nodes represents either variables with constant values or
variables with desired (goal) values. Moreover, a technique
for storing knowledge from already encountered
operational situations is proposed. This technique stores
this information in the form of a number of fuzzy if-then
rules. The fuzzy membership partition of the range of each
variable and the fuzzy rules can be extracted in an on-line
or off-line fashion. Combining the fuzzy representation
database with the feedback dependent weight updating of
the FCM results in a very efficient updating mechanism,
which reaches the new desired equilibrium point in very
few iterations.
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