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 Abstract–Adaptive Model Predictive Control (MPC) 
configurations are quite popular methodologies for successful 
control of dynamic time varying systems. Most adaptive 
schemes include the persistent excitation requirement as an 
additional hard constraint of the optimization problem. In 
this paper an alternative approach is attempted, by using the 
principles of multiobjective optimization. A prioritized 
optimization problem is formulated, considering the 
persistent excitation as the top priority objective. Afterwards, 
an objective function is assigned to each one of the remaining 
control goals. This way, the adaptive capabilities of the 
methodology are exploited and the time consuming tuning 
procedure to weigh the different control goals in one objective 
function, is avoided. An additional innovation of the proposed 
configuration is the utilization of an improved evolutionary 
algorithm in order to meet the complexity and non convexity 
introduced by the persistent excitation requirement. The 
overall proposed configuration is evaluated through the 
application to a continuous stirred tank reactor. The 
produced results are superior compared to the performance 
of a conventional MPC scheme.  
 
 Index Terms - Model Predictive Control, Multiobjective 
Optimization, Adaptive Control, Closed Loop Identification, 
Evolutionary Algorithms. 
 

I. INTRODUCTON 

 Model Predictive Control (MPC) refers to a category 
of particularly popular computer control algorithms with 
successful industrial applications including chemicals, 
automotive and aerospace [9, 10]. It is an optimal control 
method that implements a process model in order to predict 
the response of the controlled variable to a future sequence 
of the manipulated variables. This future sequence is the 
result of an optimization problem which minimizes the 
weighted sum of the differences of the output variable from 
their set points and the control moves. The main 
advantages of these methodologies is that they can be 
applied in cases of linear or non linear process models 
without significant modifications and can also include 
constraints on the input and the output variables. Even 
though the theory of MPC is considerably matured, many 
challenging issues to improve its performance and 
applicability still exist [9].  

Such an issue concerns the performance of the MPC 
methods in cases where more than one control goals must 
be satisfied simultaneously. In these cases the conventional 
MPC configurations assign weights to the different 
objectives in order to formulate one optimization problem. 

A quite common example is the multi input multi output 
(MIMO) systems. In such systems, the different controlled 
variables are often competitive. Consequently, to achieve a 
satisfactory performance or to assign the correct 
importance to all the output variables, a time consuming 
tuning effort is required, in order to choose the appropriate 
weight values. A different approach to confront this 
problem is to exploit the advantages of a prioritized 
multiobjective structure, where the different objectives are 
lined up according to their importance and equal in number 
optimization problems are solved. Reference [15] used 
integer variables to prioritize and optimize a number of 
different objectives. Reference [6] proposed the 
formulation of a hierarchy of objectives that represent the 
different control targets and solved such a multiobjective 
optimization problem [8].  

An also important advantage of the MPC 
configurations is that they are in general characterized by 
great robust capabilities. However, there are situations 
where the process dynamics change significantly with time 
and thus, adaptation of process model is necessary in order 
to retain a good closed loop performance. Considering that 
a process operating in closed loop cannot provide enough 
information for a successful adaptation, a persistent 
excitation constraint for the manipulated variables is 
usually added [1, 14]. The persistent excitation requirement 
can be implemented either as a hard constraint [1], which 
may result to infeasible optimization problems, or as a soft 
constraint. Reference [4] utilized the soft constraint 
approach, by augmenting appropriately the typical MPC 
objective function.  

Another significant aspect concerning MPC methods 
that will be taken into account in this work is the type of 
optimization problem that is formulated and solved on-line 
and the optimization techniques that are utilized. If the 
inputs and/or the outputs of the process are limited and the 
model describing the process is non-linear, conventional 
optimization algorithms often fail to provide acceptable 
solutions due to the increased computational effort and 
convergence to local minima. Inclusion of the persistent 
excitation constraint into the MPC framework introduces 
an additional complexity due to the non-convex nature of 
the constraint. Recognizing the difficulty of the 
optimization problem, in a number of publications [4, 12, 
13] the persistent excitation criterion is transformed to a 
relaxed LMI formulation, and the problem is solved using 
an iterative procedure.  
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During the last years, evolutionary algorithms and 
particularly genetic algorithms have found great acceptance 
in control systems engineering [2]. They are effective 
search and optimization algorithms that have borrowed 
their basic operations from the natural evolution and 
improvement of species. Their advantages are that they can 
be used for solving optimization problems where the 
objective function and/or the constraints are noncontinuous 
and/or nonconvex functions and they can be applied to a 
wide range of optimization problems without significant 
modifications. In the field of control system engineering, 
the off-line applications seem to be more appropriate for 
evolutionary algorithms. However, there are on-line cases 
where common algorithms cannot find a feasible solution, 
while evolutionary algorithms, supplied with good initial 
conditions, can provide near optimum solutions in 
acceptable time periods.  

In this work, we propose a new MPC configuration 
that addresses the above three issues. The formulation of 
the problem is based on the prioritization of the targets, so 
that the most important objectives are satisfied first. In the 
case of time varying systems, the idea is further extended 
to include the simultaneous closed-loop adaptation of the 
model into the MPC framework. This is achieved by 
considering the persistent excitation of the manipulated 
variables as an additional top priority control objective. 
The methodology that is utilized to solve the non-convex 
multi-objective optimization problem is based on the 
LUDE evolutionary algorithm [11], which has proved to be 
more efficient than common optimization routines in many 
nonconvex test cases. The proposed MPC formulation was 
applied to a nonisothermal continuous stirred tank reactor 
(CSTR) where the value of the heat transfer coefficient 
gradually decays. The proposed MPC framework is 
compared to the conventional MPC configuration.  

The rest of this article is formulated as follows: in 
section II the proposed multiobjective controller is 
described in details. In section III the evolutionary 
algorithm used to solve the optimization problem is 
presented briefly and in section IV the application and the 
results are depicted. The most important conclusions are 
outlined in the last section of this paper. 

II. THE PROPOSED MULTIOBJECTIVE ADAPTIVE MODEL 
PREDICTIVE CONTROLLER 

A. Recursive least squares (RLS) model adaptation 
 An adaptation procedure for a process model that has 
been identified off line from input/output data, ensures that 
this model will be able to track on line the dynamic 
changes of the process in the best possible way. In this 
work, time varying processes modeled by simple linear 
Finite Impulse Response (FIR) adaptive models are 
assumed. The general form of such model is described by 
(1)  
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+y )  is the prediction, made at time k for the 

future output vector of nc controlled variables at time k+1, 
( )kφ  is the regression vector containing n past input 

vectors and ( )|k kΘ  is the (nm·n+1)×nc matrix of the 
model parameters: 
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In (2), ( )ku  is the vector of nm manipulated variables. In 

(3), ( )| , 1,...,j k k j n=θ  are the time varying nc×nm 

model coefficients and ( )|k kd  is the estimated 
disturbance at time point k.  

For the on line adaptation of the model parameters the 
Recursive Least Squares (RLS) methodology, described in 
details in [1, 7, 14], is implemented. The concept behind 
RLS is to modify the estimation made at point k-1 using the 
information contained into the new data received at point 
k. The set of RLS equations for the FIR model described 
previously is: 
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where y(k) (1×nc) are the current measured values of the 
output parameters, λ is the forgetting factor, K(k) is a 
(nm⋅n+1)×1 vector and P(k) is a (nm⋅n)×(nm⋅n) matrix [1, 
14]. 
 It should be noticed that the RLS adaptation 
mechanism is a particular case of the more general 
Recursive Prediction Error Methods (RPEM) [7, 14]. In 
this work it is assumed that only white noise deteriorates 
the process. So, an FIR model is adequate to describe the 
real process and a dynamic noise model is not required. In 
this case the RPEM can indeed be substituted by RLS. The 
extension of the proposed algorithm described 
subsequently in cases where colored noise exist, is under 
investigation. It should also be clarified that the noise 
contribution to the final output is assumed to be small (the 
signal to noise ratio is large) so that the RLS (and more 
general the PEM) can be used for systems operating in 
closed loop. A survey of the closed loop identification 
methods and their limitations can be found in [3]. 

B. Model Predictive Control and Identification 
 Most popular MPC methods are based on the idea that 
at sampling time k a set of future manipulated variables 
(control horizon) are selected in order to minimize an 



appropriate objective function. The objective function 
includes both the deviations of the predicted outputs from 
their set point over a future prediction horizon and the 
control effort over a control horizon. Then, only the first 
control move is implemented and the optimization problem 
is solved again at the next time step k+1. The future 
outputs are predicted based on an available linear or 
nonlinear dynamic model of the process. Constraints on the 
manipulated and the controlled variables, as well as the 
control moves can be easily incorporated in the MPC 
configurations. The estimated error between the process 
measurement and the model prediction at the current time 
step is added on the predicted future outputs and assumed 
to remain constant, during the entire prediction horizon. 
The above are described by the following set of equations:  
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In (7)  is calculated according to (1), W and R are 
diagonal weight matrices. Equations (8)-(9) are hard 
constraints that bound the manipulated variables and the 
control moves respectively. Equation (10) assures that the 
future inputs will follow a periodic sequence.  
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 Despite the great robust capabilities of MPC schemes, 
there are situations where adaptation is necessary in order 
to preserve the accuracy of the model and maintain the 
good control performance. In order to collect sufficient 
information, update the model parameters correctly and 
avoid nonsingularities, some additional conditions must be 
enforced. Such a condition is that the system information 
matrix M(k) which is formulated each time step k based on 
the last l >mn·N+1 regression vectors  ( )kφ
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must be well conditioned. This is guaranteed if a real 
positive number ρ exists such that the following matrix is 
positive semidefinite [1, 4, 14]: 
 
   (12) ( ) 0   k ρ− ⋅ ≥M Ι
 

So, an adaptive MPC configuration should also include the 
following constraint (Persistent Excitation, PE ): 
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for i=1,…, p. The above MPC configuration has a serious 
drawback. Depending on the value of the parameter ρ in 

(13), there will probably exist situations that the persistent 
excitation requirement is not satisfied. This leads to 
infeasibilities, which are totally unacceptable in an on-line 
optimization problem, since they can seriously deteriorate 
the closed–loop performance. 

C. Multiobjective formulation of the adaptive MPC 
configuration 
 In the proposed multiobjective MPC methodology, the 
idea of relaxing the persistent excitation requirement is 
exploited, by considering model adaptation as the most 
important objective. This is achieved by creating a 
hierarchy of objectives and placing the relaxed persistent 
excitation requirement at the top of this hierarchy. More 
specifically, the persistent excitation constraint (13) is 
transformed to an optimization problem, which is 
formulated as follows: 
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subject to (8)-(10) and: 
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for i=1,…,p and ρ>0. The optimization problem consisting 
of (14) and (15) is always feasible, since when µ→ρ, (15) 
is trivially satisfied.  
 The optimized value µopt of the parameter µ is then 
used in the subsequent optimization problems that will be 
formulated and solved sequentially. In order to proceed, 
the proposed method assumes that the nc controlled 
variables have been sorted according to their importance, 
so that the highest priority variable is placed first in the 
hierarchy. If the system is square (same number of 
manipulated and controlled variables, nc=nm) a different 
manipulated variable can be assigned to each controlled 
variable, so that pairs uj-yj, j=1,…,nc are constructed. For 
the selection of pairs, the designer can use his intuition or 
knowledge of the process, but can also adopt systematic 
methods that are utilized for designing decoupling control 
systems [16]. Then, the proposed multiobjective MPC 
scheme proceeds in the following way: 
 
FOR j=1 to nc 
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subject to (1), (8)-(10), the constraints on the output 
responses which are consecutively added to the constraint 
set and the persistent excitation equation, which is 
modified as follows: 
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for i=1,…, p 
Add the following constraint to the set of constraints: 
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where (
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+ ) are the optimal response values for the 

controlled variable. 
 

END 
 
 Consideration of the PE requirement as a top priority 
objective offers a great advantage compared to the MPC 
configuration described by (7)-(10), (13) since it avoids the 
infeasibility problems that may be encountered due to the 
hard constraint (13). Compared to a soft constraint 
approach presented in [4] the proposed methodology has 
two advantages. The first improvement is that it avoids the 
extra tuning effort introduced in the problem, by 
weightening the PE in the MPC objective function. 
Furthermore, the proposed method guarantees that the 
maximum possible excitation (up to the limit imposed by 
ρ) is introduced to the sequence of manipulated variables. 

The move suppression matrix Rj in the sequential 
formulation of the optimization problems described above, 
are selected so that small weights are assigned to the inputs 
1,2,...,j and large weights to the inputs j+1, j+2,…,nm. In 
this way, energy is preserved to control the next outputs in 
the hierarchy. Thus, the method guides the user in selecting 
proper values of the matrices Rj, in contrast to the classical 
MPC configuration, where the matrices W and R in (7) are 
selected based on a time consuming trial and error 
approach. 

Constraint (18) assures that once an optimal response 
profile has been calculated for a controlled variable, only 
improvements are allowed in subsequent iterations 
regarding the predicted response of the variable.  
 The above procedure can be easily extended to non-
square systems by assigning more than one manipulated 
variables to some of the controlled variables. Also, in case 
of large systems, the variables can be partitioned in groups 
containing more than one input and output in order to 
reduce the number of objective functions that have to be 
minimized. 

III. EVOLUTIONARY ALGORITHM FOR SOLVING THE 
OPTIMIZATION PROBLEM  

 Inclusion of the persistent excitation requirement 
resolves a number of adaptive closed-loop identification 
problems, but introduces an extra computational 
complexity. The persistent excitation requirement is a non-
convex constraint and thus the entire MPC optimization 
problem cannot be solved efficiently by standard methods. 
In this work, we use evolutionary computation to solve the 
sequential non-convex constrained optimization problems 
that are formulated. More specifically, a method based on 
the line up differential evolutionary algorithm (LUDE) is 
used, which has already been tested in numerous non-
convex optimization examples [11]. The innovation of this 
evolution algorithm is that the constraints are introduced in 

the objective function in the form of a Lagrange penalty 
function, whose parameters are adapted during the 
execution of the algorithm. Thus, the algorithm consists of 
two iterative procedures: the inner loop where an 
evolutionary algorithm solves the unconstrained 
optimization problem with fixed Lagrange multipliers and 
penalty parameters and the outer loop where adaptation of 
the parameters is taking place.  
 One advantage of the LUDE algorithm is that contrary 
to conventional genetic algorithms, it uses a limited 
number of tuning parameters. For example, the 
probabilities of mutation and crossover, which are key 
tuning parameters in most genetic algorithms are not 
specified by the user, but are calculated independently for 
each individual inside the algorithm. In summary, the 
tuning parameters are the following: the size of the 
population (number of chromosomes), the maximum 
number of inner and outer iterations, which are limited by 
the time which is available to solve the multiobjective 
optimization problem, and the parameters which control 
the rate by which the Lagrange multipliers and the penalty 
parameters are modified between outer iterations. It should 
be noted that the convergence of the algorithm can be 
accelerated, by using in each time step as initial choices for 
the population of solutions, the optimal solutions calculated 
in the previous time step. The interested reader can find all 
the details of the LUDE algorithm in [11]. 

IV. CASE STUDY: THE CONTROL OF A CSTR REACTOR   

 The proposed methodology is applied to a control 
problem concerning a non isothermal continuous tank 
(CSTR) reactor with two inputs and two outputs. The 
differential equations (19)-(20) describe the real behavior 
of the process: 
 

 ( ) ( ) 2
A A,in A o expdC dt F C C F k E RT CA= − − − ⋅  (19) 

 

 ( ) ( ) ( )
( )

2
in R A

A

( ) exp

( )

o p

j p

dT dt F T T V H k E RT C c

UA T T Vρ c

ρ= − + −∆ − ⋅

− −
(20) 

 
where V is the volume of the reactor, U, A are the overall 
heat transfer coefficient and the surface of the exchanger 
respectively, ko, (-∆H)R, ρA, cp, E/R are constants of the 
process, Tin is the inlet temperature, CA,in is the inlet 
concentration of the reactant A, Tj is the temperature of the 
coolant, F is the flow rate, CA is the concentration inside 
the reactor and T is the temperature inside the reactor.  
 In these simulations F and Tj were used as the 
manipulated variables and the two remaining inputs CA,in, 
Tin were considered as disturbances. The controlled 
variables were the concentration of the reactant CA and the 
outlet temperature T. The model parameters and the steady 
state values can be found in [5]. The differential equations 
were solved using the ode45 Matlab function using a 
sample time of 1min. A Gaussian distributed noise is added 
to the measured outputs with standard deviation 0.0001 for 
the reactant concentration and 0.1 for the reactor 



temperature. The process was also assumed to be time 
varying due to the following gradual decrease of the heat 
transfer coefficient U:  
 

 ( )20000 exp 0.001U A t⋅ = ⋅ −  (21) 
 

 The multiobjective MPC configuration described in 
section 2 was applied using a FIR model consisting of 
n=20 past values of each manipulated variables. The rest of 
the algorithm parameters are summarized in Table I. The 
overall algorithm was implemented in the following way: 
First the persistent excitation optimization problem was 
solved using the evolutionary algorithm and gives an 
optimal value µopt. Then, the concentration of the reactant 
at the outlet of the reactor was controlled using the coolant 
temperature as the main manipulated variable (a large 
move suppression coefficient was assigned to the flow 
rate). Finally the temperature of the reaction mixture was 
optimized, using both the manipulated variables, provided 
that both the persistent excitation optimal value µopt and the 
optimal concentration profile were preserved. The 
manipulated variables and their moves are bounded for 
i=1,…p: 
 9 l/min ≤ F(k+i) ≤ 25 l/min  (22) 
 170K≤ Tj(k+i) ≤ 290K (23) 
 (F k i∆ + −1) ≤ 1 l/min (24) 

                       (jT k i∆ + −1) ≤ 5K          (25) 
 

TABLE I 
PARAMETERS OF THE MPC ALGORITHMS 

Parameters  Conventional MPC Multiobjective adaptive 
MPC 

Nv 2 2 
C  6 6 
P  10 10 
N 20 20 

W 
10 0
0 1

⎡ ⎤
⎢ ⎥
⎣ ⎦

* - 

R 
1 0
0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

* - 

R1, R2 - 
1 0
0 0.1
⎡ ⎤
⎢ ⎥
⎣ ⎦

, * 
0.1 0
0 0.1

⎡ ⎤
⎢ ⎥
⎣ ⎦

L - 50 
Λ - 1 
Ρ - 0.001 
Adaptation method - RLS 
 
 In order to explore the advantages of an adaptive 
algorithm, a simulation containing two set point changes 
for both variables was performed. More precisely, the set 
points enforced at time point 70 for the concentration and 
the temperature were 0.07 mol/l and 370K respectively, 
while after some time the process was forced to return to 
the original set points (0.07545 mol/l and 376.3K). 
Adaptation of the model parameters also started at time 
point 70, using l=50 past values of the input variables.  
 Fig. 1 depicts the results produced by a conventional 
(nonadaptive) MPC approach consisting of (7)-(10), where 
                                                           
*Matrices W, R,R1, R2 refer to the scaled values of the input and output variables. 

the future input variables are forced to remain constant 
after the end of the control horizon. The optimization 
fmincon function of Matlab is used to solve the 
optimization problem. In order to show a fair comparison, 
a much larger weight was assigned to the deviation 
between the output concentration and the desired set point. 
The responses produced by the proposed methodology and 
the LUDE optimization algorithm are given in Fig. 2. The 
manipulated variables for both configurations are depicted 
in Fig. 3. 

Comparison results are in favor of the proposed 
methodology. Although dynamic behaviors are comparable 
for the concentration of the reactant in the outlet stream, an 
improved response, due to adaptation, is observed for the 
reactor temperature. Furthermore, the proposed approach  
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Fig. 1 Responses of the controlled variables using the conventional MPC 

configuration. 
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Fig. 2 Responses of the controlled variables using the multiobjective 

adaptive MPC configuration. 
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Fig. 3 Comparison between the proposed scheme and a typical MPC 

configuration: The manipulated variables. 
 
manages to produce zero set point offsets for both 
controlled variables and both set point changes. This is not 
achieved by the non adaptive MPC, since it does not have 
the capability to correct the model according to the gradual 
changes in the dynamics of the process. It is important to 
notice that the improvement is more obvious during the 
second set point change, where due to the more intense 
modification of the heat transfer coefficient, permanent 
deviations from the actual set points are observed, when 
the conventional MPC approach is utilized. In summary, 
the advantages of the proposed MPC configuration 
compared to the classical MPC scheme are: a) the 
adaptation of the dynamic model that maintains a good 
performance even in the cases of severe and/or sudden 
modifications in the dynamics of the process or changes in 
the operating range and b) the utilization of an evolutionary 
algorithm that solves successfully the non-convex 
optimization problem that is formulated on-line. The 
algorithm is computationally efficient, given that a good 
guess is usually available as an initial solution, which is the 
input sequence calculated at the previous time step. 

V. CONCLUSIONS 

 In this paper a prioritized multiobjective MPC 
approach is suggested for time varying systems. An 
advantage of this work is that it avoids the significant 
tuning effort, which is necessary in order to combine 
various control goals of different importance in a single 
optimization problem. A significant modification compared 
to the standard MPC formulation, is the substitution of the 
persistent excitation constraint of the manipulated variables 
by a top priority optimization problem. Satisfaction of the 
first objective guarantees that the process produces 
adequate information to identify dynamic modifications 
even in closed loop mode. Then, the rest of the control 
goals are satisfied according to their relative importance. 

The simulation examples of a time varying CSTR proved 
that the closed loop performance of the proposed scheme is 
superior to the standard MPC scheme. 
 The paper also explored the utilization of evolutionary 
computation for solving the non-convex nonlinear 
optimization problems that are formulated by including the 
persistent excitation requirement in the MPC configuration. 
The evolutionary algorithm that was tested proved to be 
very efficient for solving such problems. The idea of using 
an evolutionary algorithm to solve MPC-related 
optimization problems can also be extended to the cases 
where nonlinear models are used for predicting the future 
behavior of the controlled variables.  
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