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Abstract- PID controllers are very common 
in industrial systems applications.  The tuning of 
these controllers is governed by system 
nonlinearities and continuous parameter 
variations.  In this paper, a complete and 
rigorous comparison is made between two tuning 
algorithms.  The PI controller was used in a 
speed control loop in a Direct Torque Control 
(DTC) scheme applied on an induction motor.  
The first method applies off-line genetic 
algorithm (GA) strategies and the other one 
makes use of an online Fuzzy Logic (FL) tuning 
scheme.  DTC is then tested with the two schemes 
for two cases, with normal operating conditions 
and with a sudden change in load torque applied 
to the motor. Results obtained show that the 
fuzzy logic on-line tuning technique can provide 
better speed control performance when system 
parameter variations occur. On the other hand 
for nominal operation the genetic algorithms 
scheme is preferred. 
 

Index Terms – Speed control, induction 
motor, direct torque control, Fuzzy logic, Genetic 
algorithms. 

 
 
I.   INTRODUCTION 

Recently there has been a fast growth in 
industrial applications of the DTC technique.  
This is due to its quick torque response, 
simplicity and robustness against rotor 
parameters variation.  Compared with a vector 
control scheme, DTC provides similar 
dynamic performance with simpler controller 
architecture [6].  The basic block diagram 
representation of the direct torque control of 
three-phase induction motors with a speed 
control loop is shown in Fig.1. 

The most common choice for the speed 
controller shown in Fig. 1 is the so called PID 
compensator since they have a simple structure  
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Fig.1 Block diagram of DTC with speed control loop 
 

and they can offer a satisfactory performance 
over a wide range of operation.   

The main problem of that simple 
controller is the correct choice of the PID gains 
and the fact that by using fixed gains, the 
controller may not provide the required control 
performance, when there are variations in the 
plant parameters and operating conditions. 
Therefore, a tuning process must be performed 
to insure that the controller can deal with the 
variations in the plant.   

To tune the PI controller (usually in drives 
applications the derivative part of the 
controller is not used) a lot of strategies have 
been proposed.  The most famous, which is 
frequently used in industrial applications, is 
the Ziegler-Nichols method which does not 
require a system model and control parameters 
are designed from the plant step response. 
Tuning using this method is characterised by a 
good disturbance rejection but on the other 
hand, the step response has a large percentage 
overshoot in addition to a high control signal 
that is required for the adequate performance 
of the system. Another technique uses 
frequency response methods to design and tune 
PI controller gains based on specified phase 
and gain margins as well as crossover 
frequency.  Furthermore, root locus and pole 
assignment design techniques are also 



proposed in addition to transient response 
specifications. All these methods are 
considered as model based strategies and then 
the efficiency of the tuning law depends on the 
accuracy of the proposed model as well as the 
assumed conditions with respect to actual 
operating conditions.    

Artificial Intelligence (AI) techniques 
such as neural networks, fuzzy logic and 
genetic algorithms are gaining increased 
interest nowadays. 

A lot of techniques have been proposed to 
tune the gains of PI controller based on AI 
techniques: Self tuning FL and neural network 
techniques are some of these methods 
proposed for the online adaptive tuning of PI 
controller.  In such application, the controller 
gains are tuned with the variation of system 
conditions.  Moreover, GA is proposed for 
both online and offline tuning procedure [4] 
even though this may require high processing 
power. The advantage of tuning with GA is the 
ability of choosing controller gains which 
optimize drive performance based on multi 
objective criterion without tripping in a local 
minima solution. Furthermore, combinations 
of AI techniques are also introduced such as 
Neuro-Fuzzy and Genetic-Fuzzy techniques 
[8]. The advantage of these techniques is that 
they are model free strategies because they use 
the human experience for the generation of the 
tuning law. 

This paper provides a comparison between 
two strategies used for tuning the PI speed 
controller in the direct torque controlled 
induction motor.  The first one is based on 
Genetic Algorithms (GA), while the second 
one is based on Fuzzy Logic (FL). In the first 
method, GA searches for the optimal gains of 
the PI speed controller based on a fitness 
function and the search procedure is such that 
a performance index is minimized. In the other 
method, FL is used for tuning the PI controller 
online based on a group of IF-THEN control 
rules which mimic the human logic and are 
generally derived from experts’ knowledge.   

II.  DTC STRATEGY 

In principle, DTC is a direct hysteresis 
stator flux and electromagnetic torque control 
scheme, which triggers one of the eight 
available discrete voltage vectors generated by 
a Voltage Source Inverter (VSI) to keep the 
stator flux and torque within the limits of two 
predefined bands.  The correct application of 
this principle allows a decoupled control of 
flux and torque [6]. 

The primary space voltage vector of the 
PWM inverter us can be expressed in terms of 

three switching functions s1, s2, s3 and the DC 
link voltage (V) as: 
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Where usd and usq are the d-axis and q-axis 
stator voltage components. 

In direct torque control schemes the 
magnitude of the stator flux linkage vector is 
controlled which can further be decomposed to 
its orthogonal components expressed at a 
stationary reference frame as: 

( )∫ −= dtiRu sdssdsdψ  (2) 

( )∫ −= dtiRu sqssqsqψ  (3) 

where ψsd and ψsq are the d-axis and q-axis 
stator flux linkage components. 

The stator flux position (θs) is determined by 
dividing the d-q plane into six 60˚ regions and 
three sign detectors are used to determine the 
sector over which that vector passes.   

The basic DTC strategy is that the status 
of the errors of stator flux magnitude | ψs | and 
electromechanical torque (Tem) can be detected 
and digitalized by two- and three-level 
hysteresis comparators.  The optimum 
switching table is then used to calculate the 
status of three switches s1, s2, s3 that will 
determine the location of the voltage space 
vector us which depends on the stator flux 
angle (θs). 

If the drive contains a speed control loop, 
then the reference speed input is compared 
with the actual motor speed and the speed error 
is fed to a speed controller.  The output of the 
speed controller is the reference 
electromagnetic toque. 

In an induction motor, the mechanical 
balance equation can be written as: 

ωω rrLem P
B

P
JTT +=−

•  (4) 

And the electromagnetic torque is given by: 

αsin
2
3 iψ ss

PT em =  (5) 

Where TL is the load torque, J is the combined 
motor and load inertia, B is the friction 
coefficient, P is the number of motor pole 
pairs, ωr is the rotor electrical speed, ψs is the 
stator flux linkage space vector, is is the stator 
current space vector both expressed in the 



stationary reference frame and α is the angle 
between the stator flux linkage and stator 
current space vector. 

III.  PI CONTROLLER TUNING, USING GA 

GA is a stochastic global search 
optimisation technique based on the 
mechanisms of natural selection.  Recently, 
GA has been recognised as an effective 
technique to solve optimisation problems and 
compared with other optimisation techniques; 
GA is superior in avoiding local minima which 
is a common aspect in nonlinear systems. 

GA starts with an initial population 
containing a number of chromosomes where 
each one represents a solution of the problem 
which performance is evaluated by a fitness 
function. Generally, GA consists of three main 
stages: Selection, Crossover and Mutation.  
The application of these three basic operations 
allows the creation of new individuals which 
may be better than their parents.  This 
algorithm is repeated for many generations and 
finally stops when reaching individuals that are  
the optimum solution to the problem [3, 7].  
The GA architecture is shown in Fig.2.   
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Fig.2 Genetic Algorithm Architecture 

A lot of techniques have been proposed to 
increase the convergence speed of GA such as 
Parallel Genetic Algorithm based on the Allied 
Strategy (PGAAS) which is suitable for online 

applications [4], multi population techniques 
and others. 

In the case of using a GA method to tune 
the PI gains in the previously mentioned speed 
control loop, the fitness function used to 
evaluate the individuals of each generation can 
be chosen to be the integral time of absolute 
error (ITAE): 

 
( )∫= dttteITAE  (6) 

During the search process, the GA looks 
for the optimal setting of the PI speed 
controller gains which minimizes the fitness 
function (ITAE).  This function is considered 
as the evolution criteria for the GA.  The 
choice of this fitness function has the 
advantage of avoiding cancellation of positive  
and negative errors.  Each chromosome 
represents a solution of the problem and hence 
it consists of two genes: the first one is the Kp 
value and the other one is the Ki value: 
Chromosome vector = [Kp Ki].  It must be 
noted here that the range of each gain must be 
specified.  The genetic algorithm parameters 
chosen for the tuning purpose are shown in 
Table I.  Here the GA starts by generating an 
initial population containing 8 chromosomes 
then the fitness value of each chromosome in 
the initial population is calculated. 

 
TABLE I 

GENETIC ALGORITHM PARAMETERS 

Number of generations 20 

No of chromosome in 
each generation 

8 

No of variables in 
each chromosome 

2 

Chromosome length 40 bit 

Selection method 
Stochastic 

Universal Selection (SUS) 

Crossover method Double point 

Crossover probability 0.7 

Mutation rate 0.05 

 
The three main parts of GA: Selection, 

Crossover and Mutation take place and then a 
new generation is produced.  This procedure 
continues for some generations and then a 
convergence to the optimal solution 
represented by a given chromosome is reached. 

 

IV.  FUZZY SELF TUNING PI CONTROLLER 

Fuzzy Logic Control (FLC) has been 
found to be excellent in dealing with systems 
that are imprecise, non-linear, or time-varying.  



FLC is relatively easy to implement, since it 
does not need any mathematical model of the 
controlled system.  This is achieved by 
converting the linguistic control strategy of 
human experience and knowledge into an 
automatic control strategy. 

FLC has become very popular in the field 
of industrial control applications. 

On-line tuning of controllers becomes of 
interest since it is very difficult for off-line 
tuning algorithms to deal with the continuous 
variations in the induction motor parameters 
and the nonlinearities present in inverter, 
motor and/or controller.  The stator and rotor 
resistances of induction motor may change 
with the temperature variation up to 50%, 
motor magnetizing inductance varies with the 
magnetic operating point and becomes 
nonlinear near the saturation level.  

Furthermore, the load torque and inertia 
may change due to mechanical disturbances.  
Nonlinearity also arises in the drive system 
due to voltage and current limits of the power 
converter and the load torque nature. 

When FL is used for the on-line tuning of 
the PI speed controller of induction motor 
DTC drive, it receives the scaled values of the 
speed error and the change in speed error.  Its 
output is the updating in PI controller gains 
(∆Kp and ∆Ki) based on a set of rules to 
maintain excellent control performance even in 
the presence of parameter variation and drive 
nonlinearity [1].   

The most important parameters of Fuzzy 
Logic are the scaling factors.  The input 
scaling factors affect the FLC sensitivity while 
the output scaling factors affect the system 
stability [7].  The block diagram of the control 
system is shown in Fig.3. 
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Fig.3 Fuzzy self tuning PI speed controller 
 
A lot of researches have proposed tuning 

methods for the FL scaling factors: Han et al.  
[2] proposed a neural network with variable 
learning rate.  The artificial neural network is 
used to represent the output part of the FLC, 
and then a back propagation algorithm is used 
to adjust the weights of the neural network.  In 

this case, the weights represent the output 
scaling factors of FLC.  Mokrani et al.  [5] 
proposed a fuzzy adaptation scheme for the 
purpose of tuning the scaling factors of FLC. 

Each input of the FLC has 5 triangular 
membership functions with equal width and 
overlap.  The first output (∆Kp) has 3 
triangular membership functions, while as the 
second output (∆Ki) has 5 membership 
functions.  The inference rules base has 25 
rules.   Membership functions can be tuned by 
trial error techniques or using any other tuning 
strategies such as GA.  The Fuzzy inference 
rules used for on-line tuning of PI controller 
gains are shown in table II and table III [1]. 

The flow chart of the Fuzzy self tuning PI 
speed controller is shown in Fig.4. 

 
TABLE II 

FUZZY INFERENCE RULES FOR UPDATING THE  
PROPORTIONAL GAIN (∆Kp)   

eω 
∆eω

NB NS ZE PS PB 

NB  PB PB PB  
NS  PB PS ZE  
ZE  PB ZE PB  
PS  ZE PS PB  
PB  PB PB PB  

 
TABLE III 

FUZZY INFERENCE RULES FOR UPDATING THE INTEGRAL 
GAIN (∆KI)  

 Start 
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Fig.4 Flow chart of Fuzzy self tuning PI speed controller 
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V.  SIMULATION RESULTS AND DISCUSSION 

To compare the two tuning strategies, 
DTC of a 10 hp squirrel cage induction motor 
with speed control loop shown in Fig.1 is 
simulated using Matlab-Simulink software.  
GA is first applied to the PI speed controller 
tuning.  During the tuning process, the 
induction motor is loaded with 25% of rated 
load torque.  A speed reference of 50 rad/s in 
addition to the rated stator flux linkage 
magnitude is the input commands to the drive. 

The speed response of the motor is 
observed and the ITAE is recorded for each 
chromosome in each generation.  After 20 
generations, the optimal solution proposed by 
GA under this loading condition is achieved 
with the chromosome consisting of Kp = 151.6 
and Ki = 3.98.   

When the drive system is simulated using 
the proposed gains, which are set to be 
constant during the simulation period, with the 
motor operating with a load torque of 25 % for 
2 s, the ITAE is equal to 0.1269. 

The Fuzzy self-tuning PI speed controller, 
with the parameters listed in Table IV, is 
simulated with the same conditions and the 
ITAE obtained is 0.1319. This discrepancy 
was expected since the GA scheme found the 
“optimum” gains for the specific conditions 
while the FLC used the “imperfect” human 
knowledge and experience. 

 
TABLE IV 

FUZZY LOGIC PARAMETERS 
Input scaling factors K1,  K2 1.1, 0.1 

Output scaling factors K3,  K4 0.2, 1.1 

Defuzzification method Centre of gravity 

Kp initial 10 

Ki initial 12 

1.5 2
0
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0.25

Time (sec)

IT
A

E 
(ra

d)

100% Load torque
increase applied

GA

Fuzzy
Logic

 
To investigate the performance of the 

tuning strategies under system parameter 
variation, the induction motor is subjected to a 
100 % load torque change (from 25% to 50% 
of the motor rated torque) at t = 1 s.   

As shown in Figs.5 and 6, the speed 
response using GA tuning has a speed 
overshoot of 0.6 % while that from FL auto 
tuning has no overshoot and the drive system 
behaves like a critical damped system.  At t=1s 
when the load is increased, the speed response 
using fixed gains (obtained by GA) drops to 
49.94 rad/s with a speed regulation of 0.12 % 
with a total ITAE (after 2 s) of 0.2132, while 
as that obtained by FL self tuning drops 
rapidly to 49.6 rad/s before the speed builds up 

again to track the reference value (50 rad/s) 
with a total ITAE of 0.1641.  The ITAE 
obtained by each tuning technique is shown in 
Fig.7.  The results are summarised in table V. 
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(b) 
Fig.5 Transient response (a) GA tuning (b) FL tuning 
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(b) 
Fig.6 Speed response at time of application of 100% load 

torque increase at t=1s (a) GA tuning (b) FL tuning 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7 ITAE for GA and FL tuning 
 
 
 
 



TABLE V 
SUMMARY OF RESULTS 

 
 

GA 
Kp = 151.6, Ki = 3.98 

FL 
Variable Gains 

ITAE 
(t=0to t=1s) 0.1207 0.125 

ITAE 
(t=1to t=2s) 0.0925 0.039 

Total ITAE 0.2132 0.1641 

Transient 
response 

0.6 % speed 
overshoot No overshoot 

Response to 
load torque 
application 

Speed drop with 0.12 
% speed regulation 

Initial drop 
then quickly 

regain the 
speed 

 
The PI controller gain variations for the 

self tuning Fuzzy Logic scheme are shown in 
Fig.8 (a) and Fig.8 (b).  The gains increase 
gradually until the command speed is reached.  
After that, the gains are kept constant.  When 
the load torque increase occurs, they rise again 
to compensate for the speed decrease and to 
return the speed back to the command value.  
That is, to ensure complete speed tracking.    
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(b) 

Fig.8 Fuzzy Self tuning Performance (a) Proportional gain 
(b) Integral gain 

 
VI.  CONCLUSION 

A comparison between two artificial 
intelligence based techniques used for the 
tuning of the PI speed controller in DTC of 
induction motor has been presented.  Under 
normal operating conditions, an off-line GA 
tuning scheme shows better performance than 

FL auto tuning since it contains the optimal 
controller gains.   

When a change in system parameters takes 
place, the results show that self tuning FL is 
superior in terms of speed reference tracking 
than fixed gains controller obtained from GA 
tuning.  This is due to the adaptive behaviour 
of FL when used with an online tuning 
strategy.   
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