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Abstract— The bullwhip effect is a well known instability
phenomenon in supply chains, related to volatility amplification
of demand profiles in the upper nodes of the chain. We propose
a novel state-space approach for analysing a simple series supply
chain model with an arbitrary number of nodes. In addition,
we develop techniques for calculating explicitly the associated
covariance matrix in parametric form, under white-noise demand
profile assumptions. This allows us to analyze the effect of a
parameter in the studied inventory policies on the bullwhip effect
for chains with an arbitrary number of nodes.

Index terms- Bullwhip effect, covariance matrix, state-
space analysis, supply chain.

I. INTRODUCTION

The bullwhip effect is a well known instability phenomenon
in supply chains, related to increased volatility in demand
profiles in the upstream nodes of the chain. This may limit
significantly the smooth operation of the chain and result in
high costs arising due to its implications on production plan-
ning, high levels of inventory costs, poor customer service, etc.
The bullwhip effect has been analyzed extensively in recent
literature, and many contributing factors for this phenomenon
have been identified [7], [8], [5], [6]. These include poor co-
ordination, aggressive stock replenishment/demand forecasting
policies and uncertain lead times in the chain.

In this work we develop a simple stochastic multi-node
supply chain state-space model and analyze its properties in
the steady-state, under white noise demand-profiles of the end-
customers. Although a white-noise demand profile is clearly
unrealistic for real supply chains (as it ignores, for example,
trends, seasonal variations or more complex patterns) it offers
the advantage of simplicity and can be easily extended to
more complex situations, e.g, ARMA models. The model is
sufficient for the purposes of this work, which is the analysis
of the effect of inventory policies on the bullwhip effect, rather
than, e.g, demand forecasting.

In this work we have opted for a state-space modelling
approach rather than the more traditional transfer-function
based technique. In a certain sense, state-space and transfer

function approaches are equivalent for discrete LTI systems.
For example, if a transfer-function technique is followed, the
covariance functions of the output variables of the system
can be obtained by taking the inverse (two-sided) Z-transform
of the spectral density Φ(z) = σ2G(z)G(z−1), where σ2

is the variance of the white-noise input and G(z) is the
system’s transfer function. However, the state-space approach
taken in this work is more direct for our purposes and offers
the following advantages: (a) State-space methods can be
extended to time-varying and non-linear systems, (b) State-
space techniques can be used to calculate covariance functions
not only of the output variables but also of all internal variables
of the system, even ”non-minimal” ones, and (c) State-space
techniques are more suitable for the recursive updating of the
covariance function (obtained by solving a Lyapunov equation)
of structured multi-node systems of the type used in this work.

The structure of the paper is as follows. In section 2,
we develop a state-space model of a series multi-node chain
under simple but realistic assumptions, by adapting the model
presented in [4]. We modify this model in two ways: First, our
approach is entirely state-space based and does not involve
z-transforms. Secondly, we add a stochastic element to the
model by assuming that the driving signal is a stochastic
process modelling end-customer demand. In this framework,
the bullwhip effect is quantified as the variance of the ordering
signals, as they propagate upstream in the chain. In section 3,
we develop effective computational methods for calculating
the covariance matrix of the model in parametric form (for
models with an arbitrary number of nodes). This leads in
section 4 to the effective characterisation of the bullwhip effect
in terms of stock-replenishment policies, assumed to be fully
decentralised. Finally, the main conclusions of the work and
a few suggestions for further research appear in section 5.

II. THE SUPPLY-CHAIN MODEL

We consider a simple series multi-stage supply chain as
shown in Fig.1. There are n individual stages between generic
Customer and Manufacturer and we denote as i the interme-
diate supplier index (i ≥ 1). Fig.1 also depicts the flow of
goods and information(orders) within the supply chain. Let
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Fig. 1. Series supply chain with n stages

Ii(t) denote the inventory level of node i at time t. We let
also Yi,i−1(t) indicate the amount of goods to be delivered to
node i− 1 by the upstream node i at time instant t. We also
introduce a time delay L, which is the lead time needed for
the goods to be dispatched to the downstream node (i.e, the
goods are delivered at time t+L). The model is based on [4],
from where additional details can be obtained.

Balancing the inventory Ii(t) of node i at time step t gives:

Ii(t) = Ii(t− 1) + Yi+1,i(t− L)− Yi,i−1(t) (1)

where Ii(t − 1) is the inventory level at node i at time step
t − 1 and Yi,i+1(t − L) represents the products dispatched
by the upstream node i + 1 to node i, which is assumed to
arrive with a delay of L time steps. Although inventory level
is a key variable in supply chain operation, each node i can
better monitor the changes in inventory level at time t by using
inventory position, IPi(t), which is given by:

IPi(t) = IPi(t− 1) + Yi+1,i(t)− Yi,i−1(t) (2)

We consider the supply chain network as a decentralised
control system - where there is no global moderator and
decisions are taken locally at each node, e.g, corresponding
to managers aiming to hold their stocks at certain levels or
to meet expected future demand, following a series of rules
which are known as inventory policies. Hence, the amount
of orders placed at the upstream level must satisfy certain
criteria such as minimising holding costs, avoiding shortages
and maximising profits. Note that each node is the chain
is assumed to be autonomous, i.e., we do not consider co-
operation between managers through information sharing [1].
The resulting decentralised structure of the system is one of
the main contributory factors of the bullwhip effect - in a
sense it is analogous to the “string oscillations” observed
in automated highway systems due to the lack of proper
“preview information”. Whereas co-operation between SC
managers (e.g., by sharing information) would certainly help
to alleviate the bullwhip effect, unfortunately most enterprises
regard these data as proprietary and are reluctant to share them.
Techniques for forcing co-operation between SC players are
not considered in this work.

We denote by Oi,i+1(t) the amount of orders placed by
node i to node i + 1, given by:

Oi,i+1(t) = ki(SPi − IPi(t)) (3)

where SPi represents a target set-point (assumed constant) and
ki is the corresponding inventory replenishment gain factor.
Standing orders of node i at time step t evolve according to
the difference equation:

O?
i (t) = Oi−1,i(t) + O?

i (t− 1)− Yi,i−1(t) (4)

For the purposes of further analysis it is assumed that there
is always enough stock at each node to meet the demand, so
that Yi,i−1(t) = O?

i (t − 1). This implies that the amount of
goods dispatched to node i from the downstream stage i−1 at
time t is the amount of standing orders of node i at time t−1.
This is essentially a linearisation assumption also made in [4]
which simplifies the subsequent analysis. In addition, since the
covariance analysis of the following section does not depend
on SPi, we set SPi = 0 for simplicity.

We now consider the series supply chain model depicted
in Fig.1. Each stage i has two inputs wil and wir and two
outputs zil and zir (left and right respectively). It can be
inferred from the nature of the figure’s interconnections
that wil = zil and wir = zi+1,l. The terminal node Φ
representing the Manufacturer is assumed to be a simple time
delay. Thus the manufacturer always delivers the order he
receives with a delay of one time step. The model equations
for each separate node can be expressed in state space form as:

xi(t + 1) = Aixi(t) +
(

Bli Bri

) (
wil

wir

)

and
(

zil

zir

)
=

(
Cil

Cir

)
xi(t) +

(
Dill Dilr

Dirl Dirr

)(
wil

wir

)

The equivalent state-space model of the manufacturer is:

xφ(t + 1) = Aφxφ(t) + Bφzi+1,r

and
wi+1,r = CΦxφ(t)

Due to our previous assumption we have Aφ = 0 and Bφ =
Cφ = 1. The state space form of the node i given above can
be written in more concrete form as:

xi(t + 1) =
(

1 −1
0 0

)
xi(t) +

(
0 1
1 0

)
ui(t) (5)

and

yi(t) =
(

0 1
−ki ki

)
xi(t) +

(
0 0
0 −ki

)
ui(t) (6)

where yi(t) and ui(t) are the (two-dimensional) vector outputs
and inputs of node i, respectively.

Considering next a supply chain consisting of four stages
(e.g, Manufacturer, Distributor, Intermediate Supplier and Re-
tailer) we can easily obtain the overall state space model by



aggregating the models of all nodes. In our previous notation
this corresponds to setting i = 2.

The four-stage supply chain can be described by the fol-
lowing equations:

x1(t + 1) = A1xi(t) + B1rC2lx2(t) + B11u(t)

x2(t + 1) = B2lC1rx1(t) + (A2 + B2lD1rrC2l)x2(t)

+B2rC3lx3(t)

x3(t + 1) = B3lC2rx2(t) + (A3 + B3lD2rrC3l)x3(t)

xφ(t + 1) = C3rx3(t) + D3rrxφ(t)

which can be assembled in matrix form to give the overall
model of the chain. Note that here u(t) represents customer’s
demand.

As mentioned previously, the inventory level Ii and the
amount of goods Yi,i−1 dispatched by node i to its downstream
stage are both important variables for decision making. By
making these decisions, managers can manipulate and control
the entire supply chain system. By choosing IPi and Yi,i−1

as state space variables, all other variables of the node can be
easily calculated.

The state space model given by equations (5) and (6) can
be written as:(

IPi(t)
Yi,i−1(t + 1)

)
=

(
1 −1
0 0

)(
IPi(t− 1)
Yi,i−1(t)

)

+
(

0 1
1 0

)(
Oi−1,i(t)
Yi+1,i(t)

)

and

(
Yi,i−1(t)
Oi,i+1(t)

)
=

(
0 1
−ki ki

)(
IPi(t− 1)
Yi,i−1(t)

)

+
(

0 0
0 −ki

)(
Oi−1,i(t)
Yi,i+1(t)

)

+
(

0
ki

)
SPi(t)

Note that the assumed inventory replenishment policy is
continuous (rather than periodic). We also not consider vari-
ations in the setpoint levels, i.e., SPi(t) are assumed to be
constant.

III. COMPUTATION OF MODEL’S COVARIANCE MATRIX

In this section we outline a method for calculating the
covariance matrix of the state-vector x(t) of the overall model
developed in the previous section using symbolic computa-
tions. In our application, symbolic computations are essential,
since we wish to obtain the solution as a function of the
gain parameters {ki}, which will allow further investigation
of the ”bullwhip” effect using our model. We first outline a
general solution method based on Kronecker matrix products

and vector operations [3]; subsequently, the special structure
of the state-space model is exploited to derive a simple
recursive solution procedure which can be applied to models
of arbitrarily high complexity.

Consider the LTI discrete-time state-space model:

x(t + 1) = Ax(t) + Be(t), y(t) = Cx(t) + De(t) (7)

where {e(t)} denotes a white vector-noise sequence of unit
intensity, representing customer demand, assumed to have
been applied as input to the model since the infinite past. Then,
assuming that A is asymptotically stable (all eigenvalues of A
have modulus less than one), the (steady-state) covariance of
the state-vector x(t), E(x(t)x′(t)), is given by the (unique,
positive semi-definite) solution of the discrete Lyapunov equa-
tion [2]:

P −APA′ −BB′ = 0 (8)

Further, E(yy′) = CPC ′ + DD′. In our case, A depends
linearly on n parameters k1, k2, . . . , kn which are assumed
constant (but possibly unknown). Hence, the solution of (8) is
the steady-state covariance of x(t) for all t, for all combina-
tions of {kj} for which A is asymptotically stable. It is shown
next that this condition is satisfied if and only if the parameter
vector k = (k1, k2, . . . , kn) lies in the hypercube:

Kn = (0, 2)n := {k ∈ Rn : 0 < ki < 2, i = 1, 2, . . . , n}
This agrees with a parallel result in [5].

Lemma 1: Consider the m-stage model (7) depending on m
real gain parameters k = {k1, k2, . . . , km}. Then the system
is internally stable if and only if k ∈ Km. In particular, if A =
A2m+1 denotes the “A”-matrix of the state-space realisation
of the system, then the eigenvalues of A are {1 − k1, 1 −
k2, . . . , 1 − km, 0, . . . , 0}, where the multiplicity of the zero
eigenvalue is m + 1.

Proof: Consider the j-stage state-space model (j ≥ 1)
with corresponding A-matrix given by A2j+1. The proof is
by induction on j. For j = 1, the eigenvalues of A3 may be
easily calculated as {1− k1, 0, 0}. Thus A3 is asymptotically
stable if and only if −1 < 1 − k1 < 1 or equivalently if
and only if 0 < k1 < 2. Next assume that the eigenvalues of
A2j−1 are given by {1 − k1, . . . , 1 − kj−1, 0, . . . , 0} (with j
zero eigenvalues) for j ≥ 2, so that A2j−1 is asymptotically
stable if and only if (k1, . . . , kj−1) ∈ (0, 2)j−1. Introduce the
permutation matrix Qj , resulting from the interchange of the
(2j − 1)-th and 2j-th rows and columns of the unit matrix
I2j+1. Then,

QjA2j+1Qj =




A2j−1 0 0
a′21 1 1
a′31 −kj −kj




where a′21 and a′31 are irrelevant for our present purposes.
Thus, since the transformation by Qj leaves the eigenvalues
invariant, the spectrum of A2j+1 is given as:

λ(A2j+1) = λ(A2j−1) ∪ {1− kj , 0}
= {1− k1, . . . , 1− kj , 0, . . . , 0}



in which the zero eigenvalue has algebraic multiplicity j + 1,
and hence A2j+1 is asymptotically stable if (k1, . . . , kj) ∈
(0, 2)j . This completes the inductive argument. In general,
A2m+1 has m real eigenvalues at 1−kj , j = 1, 2, . . . , m, and
another m + 1 eigenvalues at the origin.

Next, let A⊗B denote the Kronecker product of two matri-
ces A and B; let also vec(A) be the operation which stacks the
elements of a matrix A in a column vector (sweeping along
the rows of A). Applying the vec(·) operation to (8) and using
the identity vec(ABC) = (C ′ ⊗A)vec(B) (see [3]) gives:

(In2 −A⊗A)vec(P ) = vec(BB′)

which may be solved as:

vec(P ) = (In2 −A⊗A)−1vec(BB′) (9)

The following Lemma guarantees that the indicated inverse
in (9) exists. The Lemma shows that matrix In2 − A ⊗ A is
non-singular for all k ∈ K. This is important as it ensures that
the symbolic inverse of the matrix exists and can be expressed
uniquely as a function of the ki’s. Of course, the solution of
the equation is a valid covariance matrix of the state x(t) only
when k ∈ K.

Lemma 2: Matrix In2−A⊗A is non-singular for all k ∈ K.
In fact, In2−A⊗A is singular if and only if (1−ki)(1−kj) = 1
for any two indices i and j such that i ≤ i ≤ m and 1 ≤ j ≤
m, where n = 2m + 1.

Proof: It follows from standard results on eigenvalues
of Kronecker products [3] that A ⊗ A has eigenvalues
{λi(A)λj(A) : i, j ∈ {1, 2, . . . , n}}. Thus from Lemma 1, the
eigenvalues of A⊗A are the m2 products {(1− ki)(1− kj) :
i, j ∈ {1, 2, . . . ,m}} and zero (with multiplicity n2 − m2).
Hence the eigenvalues of In2−A⊗A are the m2 real numbers
1− (1−ki)(1−kj) = ki +kj −kikj as i and j vary over the
set {1, 2, . . . , m}, and one (with multiplicity n2 −m2). Thus
In2 −A⊗A is singular if and only if (1−ki)(1−kj) = 1 for
some pair (i, j) such that 1 ≤ i, j ≤ m. Note that this matrix
is singular if ki = 0 or ki = 2 for some i, and certainly
non-singular if all ki lie in the interval (0, 2).

The covariance matrix obtained in (9) essentially involves
the solution of a system of n2 linear equations in the elements
of P , which depend parametrically on the ki’s. Since the
solution of the Lyapunov equation is symmetric, however, this
system of equations is redundant (with n(n− 1)/2 equations
being repeated). The solution can be simplified using the
following procedure: For a symmetric matrix P let vec(P )
denote vec(P ) with all the entries of P below the main
diagonal eliminated. Clearly, if P ∈ Rn×n, then vec(P ) ∈
Rr, where r = n(n + 1)/2. Define W ∈ Rn2×r so that
vec(P ) = Wvec(P ), e.g, for n = 2,

W =




1 0 0
0 1 0
0 1 0
0 0 1




Let also S ⊂ {1, 2, . . . , n} be the subset of the n(n− 1)/2
indices of vec(P ) which are eliminated when constructing
vec(P ). Then equation (9) may be written as:

V (In2 −A⊗A)Wvec(P ) = V vec(BB′) (10)

where V ∈ Rr×n2
denotes the unit matrix with all rows cor-

responding to indices in S eliminated. Clearly, multiplication
from the right by matrix V in (10) eliminates the n(n− 1)/2
redundant equations. Further we have:

Lemma 3: Matrix V (In2 − A ⊗ A)W is non-singular for
all k ∈ K.

Proof: Follows immediately since In2 − A ⊗ A is non-
singular for all k ∈ K, while V and W have full row rank
and column rank, respectively.

Thus equation (10) has the unique solution

p = vec(P ) = [V (In2 −A⊗A)W ]−1V vec(BB′)

from which P can be recovered as P = vec−1(p).

Example: Using the two methods described in the earlier
part of this section the covariance matrices corresponding to
the one and two stage model were obtained using the symbolic
Matlab toolbox as:

P3 =



− 1

k1(k1−2) 0 1
k1−2

0 1 0
1

k1−2 0 − k1
k1−2




and P5 is given by:




− 1
k1(k1−2)

0 − (k1−1
(k1−2)k

1
k1−2

(k1−1)k2
(k1−2)k

0 1 0 0 0

− k1−1
(k1−2)k

0 − k+2
k1k2(k1−2)(k2−1)k

(k1−1)k1
(k1−2)k

(k+2)k1
(k1−2)(k2−2)k

1
k1−2 0

(k1−1)k1
(k1−2)k

− k1
k1−2 − (k1−1)k1k2

(k1−2)k

(k1−1)k2
(k1−2)k

0
(k+2)k1

(k1−2)(k2−2)k
− (k1−1)k1k2

(k1−2)k
− (k+2)k1k2

(k1−2)(k2−2)k




respectively, where k = k1k2 − k2 − k1.

A still better method for calculating the covariance matrix of
the state-vector is to use the special structure of the state-space
model, which leads to a simple recursive updating algorithm.
This is outlined in the following result:

Lemma 4: Let (A2j+1, B2j+1) denote the j-stage state-
space model, depending on the j parameters {k1, k2, . . . , kj}
where j ≥ 1. Then:

1) There is a state-space transformation defined by a per-
mutation matrix Qj , such that

QjA2j+1Qj := A =
(

A11 0
A21 A22

)

and
QjB2j+1 = B2j+1 := B



in which: (i) A11 = A2j−1 and, (ii) A21 and A22 have
rank one, and (iii) B is of the form [B′

1 02j−1]′.
2) The Lyapunov equation P − APA′ − BB′ = 0 has a

unique symmetric positive-semidefinite solution P for
all (k1, k2, . . . , kj) ∈ (0, 2)j . Let P be partitioned
conformally with A, i.e,

P =
(

P11 P12

P ′12 P22

)

where P ′11 = P11 ∈ R(2j−1)×(2j−1), P12 ∈ R(2j−1)×2

and P ′22 = P22 ∈ R2×2. Then P11 = P2j−1 where
P2j−1 is the covariance matrix of the (j − 1)-th stage
model, i.e, the unique symmetric solution of the discrete
Lyapunov equation:

P2j−1 −A2j−1P2j−1A
′
2j−1 −B2j−1B

′
2j−1 = 0

Further, P12 and P22 have rank at most one and may
be obtained from the unique solutions of the linear
equations:

P12 −A11P12A
′
22 = A11P11A

′
21

and

P22 −A22P22A
′
22 = A21P11A

′
21 + A22P

′
12A

′
21

+ A21P12A
′
22

respectively.
3) If (k1, k2, . . . , kj) ∈ (0, 2)j , the Lyapunov equation:

P2j+1 −A2j+1P2j+1A
′
2j+1 −B2j+1B

′
2j+1 = 0

has a unique symmetric positive semi-definite solution
given by:

P2j+1 = Qj

(
P2j−1 P12

P ′12 P22

)
Qj

Remark: The Lemma shows that the covariance matrix of
the j-th stage model may be obtained recursively from the
solution of the (j − 1)-th stage model by solving two linear
equations of order 2(2j − 1) and 4, respectively (in fact of
order 2j − 1 and 2, taking into account that P12 and P22

have both rank at most one). This can be achieved by the
vectorization approach outlined earlier. In any case, the bulk
of the computation involving the solution of a (2j−1)×(2j−
1) matrix equation is completely avoided. After P has been
assembled from P2j−1, P12 and P22, P2j+1 may be obtained
by reversing the permutation through matrix Qj .

Proof: The decomposition of QjA2j+1Qj and the fact that
A11 = A2j−1 follows directly from Lemma 1. Further note
that

A21 =
(

O2j−2 −1
O2j−2 k2

)
and A22 =

(
1 1
−kj −kj

)

so that both A21 and A22 have rank one. The fact that
QjB2j+1 = B2j+1 also follows immediately since the only
non-zero element of B2j+1 is the second.

Since A is asymptotically stable for (k1, k2, . . . , kj) ∈
(0, 2)j , the discrete-time Lyapunov equation P − APA′ −
BB′ = 0 has a unique symmetric positive-semidefinite solu-
tion [2]. Using the indicated partitioning, this may be written
as: (

A11 0
A21 A22

)(
P11 P12

P ′12 P22

)(
A′11 A′21
0 A′22

)
=

(
P11 P12

P ′12 P22

)
+

(
B2j−1B

′
2j−1 0

0 0

)

which is equivalent to the three matrix equations:

P11 −A11P11A
′
11 = B3B

′
3

P12 −A11P12A
′
22 = A11P11A

′
21

and

P22 −A22P22A
′
22 = A21P11A

′
21 + A22P

′
12A

′
21 + A21P12A

′
22

Note that the first of these is a discrete Lyapunov equation;
since A11 is asymptotically stable the solution of this equation
is unique, and hence P11 = P2j−1. Moreover, since A11 and
A22 are both asymptotically stable, the solutions of the second
and third equations are also unique [2] and P22 is positive
semidefinite. To show that P12 and P22 have both rank at
most one, note that the second and third equations may be
written as:

P12 = A11

(
P11 P12

)(
A′21
A′22

)

and
P22 =

(
A21 A22

)
P

(
A′21
A′22

)

Now,
(

A21 A22

)
=

(
O2j−2 −1 1 1
O2j−2 kj −kj −kj

)

has rank one, and hence P12 and P22 have rank at most
one. Finally, note that if (k1, k2, . . . , kj) ∈ (0, 2)j , A2j+1 is
asymptotically stable and hence the Lyapunov equation:

P2j+1 −A2j+1P2j+1A
′
2j+1 −B2j+1B

′
2j+1 = 0

has a unique solution. The recursive updating formula

P2j+1 = Qj

(
P2j−1 P12

P ′12 P22

)
Qj

now follows on noting that under the state-space transfor-
mation A2j+1 → QjA2j+1Qj , B2j+1 → QjB2j+1 =
B2j+1, the solution of the Lyapunov equation corresponding
to (A2j+1, B2j+1) transforms as P2j+1 → QjP2j+1Qj .

IV. CHARACTERISATION OF BULLWHIP EFFECT

The covariance analysis carried out in the previous section
allows us to analyze the effect of the inventory replenishment
policies on the bullwhip effect. Recall that end-customer
demand has been modelled as a white-noise sequence. Hence,
the variance of the demand signal at any node of the chain may
be calculated easily from the covariance matrix. Consider as
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Fig. 2. Boundary between demand amplification and attenuation regions

an example a two-stage supply chain model. The orders placed
by the second node (on the manufacturer) correspond to signal
z2r and we can write:

z2r(t) = C2rx2(t) + D22rw2r(t) = C2rx2(t)− k2xΦ(t)

or
z2r(t) = Cx(t)

where
C =

(
0 0 −k2 k2 −k2

)

and
x′(t) =

(
x′1 x′2 xΦ

)

Thus the demand amplification factor can be obtained from
the variance of z2r, σ2 which is given as:

σ2 = E(z2
2r) = CP5C

′ =
k1k2(2 + k1k2 − k1 − k2)

(2− k1)(2− k2)(k1k2 − k1 − k2)

To find the regions in the (k1, k2) plane where demand am-
plification and demand attenuation occurs, this expression was
set to one, and the resulting equation was solved to give k2 as a
function of k1 (detailed expressions are omitted). The resulting
curve is plotted in Fig.2, and indicates the boundary between
the demand-amplification and demand-attenuation regions. As
expected, aggressive replenishment policies (i.e, large values
of k1 and k2) reinforce the bullwhip effect. Although extensive
simulation results have been obtained illustrating the validity
of the formula for the amplification factor, these are not
included in the paper due to lack of space, but will be
presented and discussed during the Conference presentation.

V. CONCLUSION

A novel state-space model has been presented for analysing
the bullwhip effect in a simple multi-stage supply chain model
using realistic assumptions. Effective symbolic computation
methods have been presented for calculating the covariance

matrix of the model in parametric form, under white-noise
customer demand profiles, applicable to models with an arbi-
trary number of nodes. This was used to obtain an efficient
characterisation of the bullwhip effect for cascade multinode
chains in terms of inventory replenishment policies. Future
work will attempt to use the additional information provided
by the structure of the covariance matrix to estimating un-
known parameters of the system (e.g, future demand profiles,
replenishment policies of neighbouring nodes, etc) hopefully
leading to an effective decentralised control scheme.
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