
 
 

 

  
Abstract— In this paper we discuss a class of failure 

detection techniques that is based on the heterarchical 
distributed state estimation structure. A heterarchical 
structure is defined as a data processing system in which there 
is no explicit hierarchy. Within this discussion, we present a 
distributed sensor fault detection and isolation method that 
results from merging hierarchical state estimation theory with 
the overlapping decompositions, expansions, and stability of 
large scale systems theory. The benefits of such a discussion 
include to have design methodologies of detection, isolation 
and diagnosis of sensor faults, that admits a range of 
implementations, allowing a tradeoff study of system 
complexity vs. performance.  
 

Index Terms – Kalman filters, Hierarchical Structures, 
Estimation Theory, Distributed Models, Hierarchical 
Control, Fault Detection, Overlapping Decompositions, 
Sensor Failures, Sensors. 

 
I. INTRODUCTION 

N HETERARCHICAL  approach may be the feasible way 
to health monitor large-scale systems since it 
decomposes the problem down into potentially smaller 

local problems. These local results can be blended into a 
global result that describes the health of the entire system. 
The benefits of such an approach include added fault 
tolerance and easy scalability.  

State estimators are, upon many aspects, an useful tool 
for fault detection and identification (FDI). Failures act as 
unexpected inputs into a system and, thus, drive the error 
residual of any state estimation to biased values.  With 
careful selection of the state estimation structure, these 
fault-driven residuals can be made to have persistent and 
distinctive characteristics. In many cases, freedom exists to 
address other design issues, such as noise sensitivity and 
parameter robustness. For these reasons, the application of 
state estimators to the problem of fault detection and 
identification has long been an rich area of research. 
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In this paper, we will look at some of the challenges  
inherent to detecting faults in large-scale systems. complete 
description of a complex system and its effective control 
requires a great quantity and variety of sensors. For such 
systems, a heterarchical fault detection scheme may be the 
logical approach to the problem. 

The heterarchical fault detection method is the result of 
combining the hierarchical state estimation theory studied  
in [2]  and extended in [14] with the decentralized control 
theory developed by [16]. It compares the overlapped state 
estimates provided from heterarchical distribute state 
estimators each driven by independent measurement sets. 

The remainder of the paper is organized as follows. In 
section II, the heterarchical state estimation structures to  be 
utilized as basis to develop the fault detectors are 
delineated. Essential insights reveal that heterarchical state 
estimators are much more suited for distributed state 
estimation than hierarchical state estimators that do not. An 
important part of section II is how to obtain the global/local 
decomposition needed to develop the basis of the fault 
detector and isolator. This lead us to develop a heterarchical 
fault detection method based upon overlapping 
decomposition. We describe this method in section III, 
based on one specific heterarchical distributed state 
estimation structure discussed in section II.  

II. STRATEGIES OF  HETERARCHICAL  DISTRIBUTED          

STATE ESTIMATION 

The general theory of hierarchical systems was and is 
continuing to be applied to control and estimation. This 
application involves optimization techniques – minimum 
variance in the Kalman approach – and concepts of 
hierarchical structures. The aim is to construct state 
estimation architectures with different performance degrees.  

We present and analyze the dynamics of the hierarchical 
structures to yield distributed state estimation methods.  

The problem of heterarchical distributed state estimation 
formulated in this work deals exactly with the 
decomposition of the correction stage and is based on the 
original version of the Kalman filter [6] as well as on its 
alternative Inverse Covariance form[1].  
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A. Strategies via Matrix Partitioning    

    These strategies are based on the Inverse Covariance 
of the Kalman filter [1].  

Consider the global system model: 
 

                  kkkk wxAx +=+1                                      (1) 

 
where wk is independent of x0 assumed Gaussian with  
covariance P0. 

In addition, consider a set of N local observations 
concerning the global system (1), comprised by the 
following equations: 
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where the vi , measurement noises, with covariance Ri

k, are 
independent among themselves and independent of wk and 
x0.  
 For the heterarchical distributed state estimation problem 
we assume that the local processing algorithms are solved 
based on local models described by: 
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where  i=1,2,..,N. 
 
 Consider the global system with the state x, decomposed 
into two subsystems with states x1 and x2. The local 
observations,  y1 and y2 , in (1)-(2), based on the knowledge 
of x, provide an exact representation of the process. On the 
other hand, the models describing the local subsystems 
states, x1 and x2 , of the global system x, and the local 
observations based on knowledge of x1 and x2 , in (3)-(4), 
could provide only an approximate  representation of  the 
global system state x. 
  The global state estimation that will be processed  in a 
centralized node, based on  the observation of the global 
system (2), can be written as follows: 
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where   ≡x  prediction of x.   

            ≡P  covariance of the estimation error of x. 
 
    If there is a transformation Ti that satisfies the 
relationship between the local and global dynamics such 
that the measurements yi and zi in (2) and (4) become 

exactly or approximately compatible, then processing at the 
local nodes solves the following local estimation problem: 
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where iΓ  is the nodal transformation matrix that satisfies  
iΓ = 

#iC . iH  and # denotes the pseudo-inverse. 

 
       From (5) and (6) we have: 
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 In general, the local estimates ix̂ are not independent.  

The correlation between these estimates is taken account 

through the P matrix. The local correction gain iG given in 
(8) incorporates the influence of these correlations in the 
global estimation process represented in (7).  

 If there is a nodal transformation iΤ in (8) that 

transforms the global model in a feasible local model, such 
that P, for example, be diagonalizable, then  we can 
construct an heterarchical and suboptimal global estimator 
in order to undo the hierarchy. 
  In principle, the strategies via matrix partitioning [2] and 
[4], as well as the strategies via the multiple projections [5], 
presented in the following subsection, require centralizer 
and coordinator modules, respectively, in order to fuse the 
local estimates in such hierarchical estimation structure.   

B.  Strategies via Multiple Orthogonal Projections 

These strategies are based on the original version of the 
Kalman filter [6]. In this class of strategies each local node 
disposes only of its local model that represents exactly a  
subsystem of the global system. Therefore, the construction 
of heterarchical distributed structures based on these 
strategies assumes the existence of a nodal 

transformation iΤ , not explicit, that satisfies exact 

relationships between the global system and the local 
subsystems.  

From this assumption results the requirement of a 
coordinator module in order to give support to the local 



 
 

 

estimates processing.  
Consider the following representations for the local 

models: 
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where the same assumptions made to the noise variables in 
(1) and (2) are held. 

The key idea of the multiple projections method consists 
in the decomposition of the correction stage of the Kalman 

filter through the orthogonal projection of the state   ix on 
the observation vector of the global system. The 
observation vector is partitioned into N components of local 
observations. In this way, the following estimation result is 
obtained: 
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≡Υ −1k  observation  subspace until the (k-1) instant.  

 
  The corrections based on the (N-1) nonlocal innovations, 
described by (10), constitute the coordinated  hierarchical  
nature of the Kalman filter. In this hierarchical structure the 
important task of incorporating the inherent correlations 
among the local models, a priori partitioned exactly, and 
the global model, is made by the coordinator. In this way, 
the optimality of the estimation with coordinated hierarchy, 
in the Kalman sense, is preserved. 
 
C. Discussions 

The bottleneck in processing for hierarchical structures is 
caused by the centralizer or by the coordinator fusion of the 
information originating in the lower levels.  

Discussions about this point have been made, e.g., in [2]-
[5], [7] –[13], and [14]. 

 In principle, (7) and (10) can be seen as global solutions 
to the hierarchical state estimation problem based on the 
dichotomy among the information filter and the state space 
Kalman filter representations. Using (7) and (10) as starting 
points, a synthetic diagram proposed as support to the 
development of distributed structures is shown in Fig. 1. 

Distribution strategies based on the multiple projections  
method as well as on matrix partitioning, lead us to face  the 
question on which  model of the local subsystems to adopt 
considering the global model? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Classes  of  Strategies for Heterarchical Distributed State 
Estimation 

 
For distributed filters derived via matrix partitioning and 

the successive orthogonalizations, the nodal transformation 
matrices, under certain assumptions, can be implicitly 
modeled in such a way that, the local estimates can be 
considered very close to the optimal estimation. 

In [9] a suboptimal state estimation structure is proposed 
via an analytical development. This structure is  conformed 
in the class 2 of Fig. 1. of strategies, and its development is 
based on the hierarchical structure proposed in [5]. This 
analytical development and the form of the approximate 
nodal transformation used in [9] is based on the SPA 
(Supplementing Partitioning Approach) technique proposed 
in [11]. Also, in [8] a theorem that establishes the necessary 
and sufficient conditions to obtain the heterarchical 
distributed structure is presented, as well as for the analysis 
of the conditions heuristically established in [11]. 

The classes of state estimation strategies shown in Fig. 1 
are, in details, discussed in [16].  
 

III. System Model, Overlapping Decomposition and  
Fault Detection Method 

 
Consider a large-scale linear interconnected system S, 

which is described by the following state and output 
equations: 
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S : kkk wAxx +=+1
                           (12) 

               kkkk vxHy +=                  (13) 

 
where  x ε Rn , wk  ε Rn is the state noise vector, yk ε Rm is the 
output measurement vector and vk ε Rm is the noise 
disturbing the output. A and H are the system matrices of 
appropriate dimensions, in which H is assumed to be a 
block-diagonal matrix with N blocks corresponding to N 
subsystems. 
       For the above system given by eqns. (12) and (13), we 
have the following assumptions: 
(1) wk and vk are Gaussian random vectors with zero mean 
and covariances respectively given  by Ewj..wk

t=Qδjk , 
Evj..vk

t=Rδjk 
(2) The disturbance vectors are uncorrelated, i.e., 
Evj..wk

t=0 ∀  j,k 
(3) The initial state vector x(0) is  a Gaussian random vector 
with mean Ex(0)=X0 and covariance  E[x(0) – X0] [x(0) 
–X0]

t=P0 
(4) x(0) and the noise vectors vk and wk are uncorrelated, i.e., 
Ex(0)..vk

t=0 , Ex(0)..wk
t=0 ∀  k 

 
       The system S described by equations (12) and (13) can 
be expanded into another system S using a linear 
transformation  
                                     xk=Txk                                    (14) 

where x ε Rn (n>n) and T is a nxn constant transformation 
matrix. The expanded system is given by: 
 

                             S : xk+1= A xk + wk                  (15) 
                                      yk= H xk +vk                     (16) 

 
where wk  is the expanded state noise and A and H are the 
new system matrices (with dimensions  nxn , mxn 
respectively) given by: 
 

 
                    A= TATI+M ; H=HT+L 

 
                          (17) 

TI=(TtT)-1T                           (18) 
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 I1,2      
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where    Ii,1 is  an identity matrix with dimension          
             (ni-ni,2) x (ni-ni,2); 
             Ii,2  is  an identity matrix with dimension            
              ni,2 x  ni,2 , i=1,...,N. 
 

 In this section, we consider the problem of detecting the 
malfunctioning sensors of the augmented system S, which 
comprises N overlapping subsystems. This will be carried 
out through the design of Partially Decentralized 
Hierarchical Kalman Filters, presented in [9] for the 
subsystems and by comparing the estimated states, which 
are obtained by two successive filters for each subsystem. 

The ith subsystem Si derived from the expansion is 
described by the following equations: 

      Si : x
i
k+1 = Ai

k x
i
k + ∑

≠
=

N

ji
j 1

Aij
kx

j
k + wi

k 

 
     (20) 

 
yi

k = Hi
kx

i
k + vi

k 

 
     (21) 

 
The results obtained for partially decentralized 

hierarchical state estimation [9]  can be applied by duality 
to the overlapping subsystems (20) and (21).    The filters 
are designed as follows: 

 
Consider the approximate equation of the expanded 

subsystem Si:  
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where 
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 with   χj
k = xj

k – xj
k/k  

 
By using (24) as a “plausible” approximation  [9] to 

represent a white noise,  we  can   estimate   the  state  xi
k+1, 

using a set of partially decoupled Kalman filters [9]  
described by the following stages. 

 
Prediction Stage 
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Qi
k      Covariance matrix of the wi

k approximate         
expanded white noise; 
Pi

k/k,P
j
k/k    Covariance matrices of the ith and jth 

approximate  expanded  subsystems, respectively. 
 
Correction Stage 
 

      xi
k/k = xi
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denotes    the  gain  matrices  of  the   local Kalman  filters  
and  γi

k/k-1 is the measurement prediction error of the ith  
approximate expanded subsystem. 

 The covariance matrix of xi
k/k  , based  on γi

k/k-1  can be 
written as: 

                      Pi
k/k = Ki

k P
i
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               Ki
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Due to the approximation (24), the prediction correction 

based on the non local observations is unnecessary as 
demonstrated in [9].  

Owing  to  overlapping decomposition,  the  state  vectors   
xi     and    xi-1    share    the    part   xi-1,2,     i.e. , 
xi-1 = [ xi-2,2  xi-1,1  xi-1,2 ]t   and  xi = [ xi-1,2  xi,1  xi,2 ]t . 

 

       Let   [ xi-1,2
k/k ]ss1 , [ x

i-1,2
k/k ]ss2  represent the estimated 

values of the state vector xi-1,2 from the filters of subsystems 
i-1 and i, respectively. 

For the case of two subsystems, during normal operation  
of     the    overall      system      we      have  

 
z1,2 = E ( [ x1,2

k/k ]ss1 - [ x
1,2

k/k ]ss2 ) = 0         (34) 
 
where E is the mathematical expectance.  

If one or more than one of the N subsystem sensors are 
malfunctioning, the above condition will be violated, as 
shown in Table 1. 

As a result, Z1,2 becomes biased (positive or negatively) 
because the discrepance between estimates of the 
corresponding overlapping state. 

Thus, by examining Z1,2 , the faulty sensors can be 
localized as shown in the voting decision Table 1. 
 

 
z1,2       Sensor fault decision 

      ε≤  fault in y1 negative 
       >ε          faults in y1 and y2 
   positive fault in y2 

 null         normal operation 
 

This tolerance value ε that means the magnitude of the 
departure from zero-mean must be found for a specific 
application depending on noise considerations and model 
parameter uncertainty. 

ε  is a constant  which is usually determined by the 
experience of the designer. However, the reability of the 
SFD scheme must be investigated in failure cases which are 
differents from those considered in obtaining the value of 
ε . 

It is important to observe that such investigation can open 
perspectives to treat the failure estimation problem too, 
because different values of  ε  could be useful to 
characterize the failures. 

The failure estimation problem involves the 
determination of the extent of failure that could be 
expressed by a sensor become completely non-operational 
(and “off”  or “hard-over” failures), or it may simply suffer 
degradation in the form of a bias or increased inaccuracies, 
which may be modeled as abrupt changes in H matrix or 
increase in the sensor covariance as well.     

Thus, by inspecting the validity of eqn.(34), we could not 
only detect the sensor failures among the N subsystems, but 
also know which once have failed. 

It is important to highlight that the use of decentralized 
estimation (25-33) modified the SFD scheme originally 
proposed in [17] which uses differences between 
overlapping states of the subsystems, by the generation of  
different failure test conditions (Table 1).  Another point to 
be noted is that in spite of not obtaining the best state 
estimate of S, the unbias property is preserved,  meaning 
that the scheme above will not only be useful as a 
composite fault detector but also as a good state estimator 
by using the inverse transformation of similarity. 

Although  from the point of view of the sensors output, 
the subsystem estimators are completely decoupled, by the 
fact the state corrections are based on purely located 
observations. In other words, such state corrections don’t 
take into account the successive orthogonalizations between 
the subsystems. On the other hand, these estimators take 
into consideration the  interaction terms between the 
subsystems.  

 If the interactions between the subsystems are strong 
(i.e. strongly connected subsystems), a malfunction in any 
sensor could affects all the local filter estimates, and by 
consequence, compromises the reliability of the SFD 
scheme proposed. 

Thus, it remains to show that the SFD scheme proposed 
also works satisfactorily to systems where the interactions 
may be strong, due to the fact the approximation (24) be 
just considered “acceptable” for weakly coupled systems 
[9].  

Figure 2 illustrates the use of the decentralized state 
estimators to detect faulty sensors when subsystems S1 and 
S2 share the state variable x2. 

 In order to minimize the effect of noise, z1,2 is passed 
through a low-pass filter such as: 

Table 1. Sensor fault decision table for two sensors 



 
 

 

 
zf

1,2 (k+1) = zf
1,2 (k) + g.[ z1,2 (k+1) – zf

1,2 (k)]             (35), 
 
where g is the filter gain to be equally to ε  chosen by 
simulations. The g gain attends on exclusively to smooth the 
estimator oscillations influenced by the state and 
measurement noise variances. In addition, if the state and 
measurement noise covariance matrices, diagonal Q and R, 
respectively, are such that all the   elements qij are identical 
fpr all i=j and rij  are identical fpr all i=j, then a unique gain g 
will smooth all the state estimation variable simultaneously. 

The filtered output zf
1,2 is used to measure the departure of 

z1,2 from zero-mean, and thus to locate the faulty sensors. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Approximate expanded system connected to  failure detection 
system 

 
IV. CONCLUSIONS 

 
 In this paper, methodologies in order to develop fault 

detectors based on heterarchical distributed state estimation 
structures are discussed. In addition, an extension of the 
Sensor Fault Detection method introduced in [17] has been 
proposed. The objective of the extension was to detect and 
isolate precisely composite sensor malfunctioning.        

This   is   achieved  by    using    an approximation which 
provides estimated interactions between the subsystems as 
portion of system noise.        

Heterarchical distributed state estimators have been used 
to estimate the states of the overlapping subsystems and a 
procedure to incorporate new interactions within the filter 
equations has been described. 
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