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Abstract - In this paper the theoretical base and practical 
application of the TOR design for the control of linear 
systems is presented. This method is based on the synergy 
of the LQG balancing and Persson-Astrom (PA) methods 
for the design of optimal controllers.  LQG balancing is a 
base for the order reduction of linear systems, whose 
processes and measurements are affected by white noise. 
The Persson-Astrom (PA) method is a base for the tuning 
of PID controllers. The method of calculation of the LQG 
controller is presented, in which the Riccati equations and 
Kalman estimator are used. The superiority of the TOR 
idea: the simultaneous use and interconnection of PA-PID 
tuning and LQG method is pointed out, by its comparison  
to the single use of the PID approach and LQG approach, 
which are  provided in the MATLAB demo for the control  
of  angular velocity of a DC motor  exposed to external 
disturbances (torque Td). The control strength of various 
methods is presented at the comparative diagram (Fig. 2) 
developed by  programming in the MATLAB environment.   
 
Index terms – LQG Balancing, model reduction, Persson-
Astrom method, TOR, controller, compensator, MATLAB    
 
 
1. INTRODUCTION 

 
    The TOR method is a synergy of the method of tuning 
PID controllers, introduced by Persson and Astrom 
[16],[17], and the method of balancing, introduced by 
Moore [1]. 
    Moore used the idea of balancing as a method for the 
reduction of the order of linear systems.  Ever since, the 
balancing method has been extended to various 
directions, such as the balancing of unstable linear 
systems [2], [3], the balancing of conservative 
mechanical systems [4] as well as the  balancing of 
nonlinear systems (stable and unstable), explored by  
Scherpen [5]. The superiority of the application of 
balancing method for the order reduction of systems has 
been investigated by Glover [6].  In addition, several 
modifications of the balancing technique have been 
proposed with purpose to improve its flexibility and 
efficiency [7-11]. Among the methods proposed for the 
order reduction of linear systems, the  Hankel approach, 
the Linear-Quadratic-Gaussian (LQG) approach and 
the  approach stand out.  ∞H

This paper’s focus is on the LQG balancing and the 
search of its applications for the optimal control of linear 
systems. 
 
 
2. LQG BALANCING 
 

The application of the Hankel method for linear and 
stable systems [6],[23] has been proved  successful in 
reducing the order of an open-loop system. Although, 
nobody can know beforehand whether it can achieve a 
successful approximation of the respective closed-loop 
system. Thus, the method of LQG balancing, introduced 
by Jonckheere and Silverman [10],[11], was chosen in 
this paper. 

The LQG balancing is formulated for minimal linear 
systems, with state equations of the form 
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where (A, B, C) are the matrices of the  system, x is its 
state vector, u its input vector, y its output vector 
( , and ), while d and ν are 
independent white Gaussian noise processes, with 
covariance functions I*δ(t-τ). 

mRu ∈ nRx∈ pRy∈

    The optimal compensator (regulator) for system (1) 
has to minimize the following cost function 
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According to Jonckheere, Silverman [11] and 

Opdenacker [12], this  compensator is determined by the 
equations 
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where,  
S is the solution of the algebraic Riccati equation  

0=−++ CSTSCTBBTSAAS  (4) 
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concerning the system filter (Filter Algebraic Riccati 
Equation-FARE), and 
P is the stabilizing solution of the Riccati equation (5) 
relating to the control of the system (Control Algebraic 
Riccati Equation-CARE) 
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Theorem 1. [7], [8], [9],[23]. The eigenvalues of P, S are 
invariant under equivalence transformations. There 
exists a representation on the state space such that 
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with 0...21 ≥≥≥ nµµµ .  This representation is called 
LQG balanced representation or LQG balanced form. 

If 1+≥ kk µµ , then the components  of the 
state vector are more difficult to be controlled and 
filtered than the components . Thus, a model   
based only on the components , it could  conserve 
possibly the substantial properties of the initial system  
in a structural closed-loop synthesis. 

kxx ....1

nk xx ....1+

kxx ....1

    By considering the state vector of system (1) as 
partitioned to its first k components and its last n-k 
components, the system’s matrices are partitioned as 
follows: 
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where  

( )kdiag σσ ,...,11 =Σ  and ( )nkdiag σσ ,...,12 +=Σ . 
 
The equivalent reduced-order system is then 
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Theorem 2. [7],[8],[9],[23]. If 1+≥ kk µµ , then: (i) the 
system  is minimal, (ii) the reduced-order 
system (8) is also LQG balanced, and (iii) the optimal 

compensator of system (8) is the reduced-order 
compensator of the full rank system (1). 

),,( 1111 CBA

The idea of balancing is based on the input energy  
level that the state vector of the system is required  to 
reach, as also on the output energy  produced by that  
vector. To define these functions, for system (1) the 
following minimal system without noise is considered: 
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where , and . mRu ∈ nRx∈ pRy∈
    The energy functions, then, corresponding to the past 
energy  and the future energy   of  
system’s (9)  state vector  ( t=0), are defined by the 
relations  
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Theorem 3.[13] If  S and P are the solutions of the 
Riccati equations (4) and (5),  then the energy equations 
are  
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By taking into account relation (6), we receive then 

0
1

00 2
1)( xMxxK T −− =  and 000 2

1)( xMxxK T=+  

(13) 
where  M is  diagonal matrix. 

From the energy point of view, the significance of a 
component  of the state vectorix )0,...,0,,0,...,0( ixx =  is 
measured in relation to its respective invariant value 

),...1( nii =µ .  For small values of iµ , the amount of 
input energy required by  the system to  reach  its state 
x  is large, while the output energy  produced by x  is 
small. Hence, if 1+>> kk µµ , then the components 

 of the state vector are less important and can 
be neglected; thus, the order of the model describing  the 
initial system is  reduced [3]. 

nk xx ...1+

 
 
3. DESIGN OF  THE  LQG  REGULATOR 
 

Bounded Output Linear-Quadratic State-Feedback 
Regulator 

 
 



 
Given the linear minimal system (9) (or the equivalent 

discrete-time system), we can design a state-feedback 
control u=-Kx, which minimizes the quadratic cost 
function with bounded output 
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Linear-Quadratic- Gaussian controller design 

LQG control is a modern technique for designing an 
optimal dynamic regulator.  It has been developed for 
both continuous and discrete systems and permits the 
consideration of the disturbances in the system and   
noise as well, during the measurement of its output. 

The objective here is to adjust the output y around 
zero.  The system is affected by disturbances  and is 
controlled by the vector u. In order to produce the 
control action u, the controller is receiving   
measurements which include noise: 

w

υ+= yy (measurement + noise). The equations 
describing the system are 
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where  and w υ  are  both white noises. 

The calculation of the LQG regulator requires the 
calculations: (i) of the optimal state feedback gain K, 
which is received as the result of the minimization 
procedure (14), and (ii) of the Kalman estimator .   x̂
    The estimation of the state vector is produced by 
using  a Kalman filter that minimizes the asymptotic 
covariance  of the estimated 

value of the error . The estimator  is   given by 
the equation  
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where u is the control input vector and y  the received 
measurements.  The Kalman gain L can be computed 
from a Riccati equation,  where   
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   The calculated, then, control action u = -Κ  remains 
optimal for the system. 

x̂

   The MATLAB environment offers routines 
appropriate for the above calculation. 
 
4.   ILLUSTRATIVE EXAMPLE IN THE MATLAB 
ENVIRONMENT  
 

A. Problem definition 
1. Consider the DC motor given in the MATLAB 

demo [21]. By using the Control System Analysis and 
Design Toolbox of  MATLAB, a bounded output LQG 
regulator to be designed in order the impact  of  the  load 
disturbances (torque Td)  upon the  angular velocity ω(t) 
of the motor to be reduced to the minimum.  

2.  The TOR (Tsiantis Optimal Regulator) design to 
be developed through the simultaneous exploitation of 
the  LQG design and  of the Persson-Astrom method of 
tuning PID controllers ([16],[17],[22]).  The TOR design 
to be tested in the MATLAB environment and its 
performance to be compared to the MATLAB demo, the 
single PA-PID tuning method, the single LQG method 
and other methods as well. 
 

B. Mathematical description of the problem 
 According to the theoretical background [19], [20], 

[23],  the system of D.C. motor can be described by the 
linear vector equations 
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In matrix form, the system is described as follows: 
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where 

            x=  =  the system state vector, ⎥
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u= = =  the system input vector, ⎥
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y, the system output vector (single output), y=ω, 
A, the state vector matrix,  
B, the input vector matrix,  
C, the output vector matrix, and  
D=0. 
The values of the physical quantities of the motor are:  
R=2.0Ohms, L=0.5 Henry, , 1.0== bm KK

 
 



 

PI or PA controller 

Fig. 1. Construction of the control system and connection of the controller to a tuned PI-control (Persson-Astrom). 
 
 

2.0=fK Nms,  J=0.02 . 22 −smKg
By  replacing the values of symbols in the matrices, the 
state equations of the D.C. motor are taking then the 
following form: 
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ω=y   (22) 

 
This M.I.S.O. system (Multiple Input Single 

Output) has two inputs.  By partitioning the input matrix 
B into two parts: the first representing the component 

of the input vector u, and the second representing the 
disturbance component  of u, we get the following 
matrices  describing the initial system (sys1): 
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  D=0. 

 
C. Output ω(t) dip to disturbances Τd 

The initial system (sys1) is stable and works 
appropriately without disturbance, that is, when 
u=[u1,u2]=[1,0]. Although, when an external 
disturbance u2 =Td (torque=0.1 Kp.m) is applied to the 
D.C. motor for a short period of time (5<t<10  sec), then 
a dip in the angular velocity ω(t)  of the motor is noticed 
and, even, the reverse of its motion.  This behavior 
creates the need for the control of the load disturbances, 
through the connection of motor to the appropriate 
controller (compensator). The searching of methods for   
the design of appropriate controller is examined below.  

 
D. Proportional – Integral Control (PI) 

Bu using proportional control, we can bring the input 
variable  at the desired level of the output au refω . To 
achieve this objective, we use the inverse static gain 

 of the system’s transfer function (sys1), which 
corresponds to  input 1: 
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By using  for increasing solely the magnitude of 

input 1 ( ) in sys1, we define the open system sys2. 
The output of sys2 shows some improvement of ω in 
relation to the effect of Td; nevertheless, the dip of ω(t) 
has not been eliminated.  By choosing a larger or smaller 
value of  than the previous one, the output increases 
or decreases at the same ratio, without improving the dip 
of ω(t) and increasing only  the error (its distance from 
the desired value

ffK

au

ffK

refω ). 
     To confront this problem, we use the integral control 

s
Ksh =)( , with unity output feedback.  If the value of   

the constant K is smaller of , then the output ω(t)  

deviates from its desired value 
ffK

refω , while if it is larger  
of , then  ω(t) oscillates. We choose, thus, the 

integrator 

ffK

s
sh 5)(1 =  and we connect it to the input 

1( ).  Then, sys3 is formed and its output response (I-
control) appears on Fig. 2. 

au

 
E. Synthesis of LQG and PI control – MATLAB 

proposal 
If the previous PI control is connected appropriately 

to the design of a LQG regulator, then sys4a is formed, 
which corresponds to the MATLAB demo. 

   F.   PA Control (tuned PI-control) 
     We now develop the PA control [24]. From the 
Persson-Astrom tables [16],[17],[22], for two-term 
tuning (PI) and characteristic sensitivity M=1.4, we get 

 

 

 
 



 
Fig. 2. Comparative diagram of control methods for a DC motor exposed 

to external load disturbance – Superiority of the TOR approach 
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 From the step response of sys1, we take the values of σ 
(=0.03) and τ (=0.111). Then, we calculate the 
coefficient for the proportional term  
 

Κ=0.2262/0.03  = Κp= 7.54 
 

Given that T=0.36sec and τ=0.111, we compute the 
integration time Τi=0.697*Τ=0.25 sec. Thus we take 
Ki=30.16.      

The above values provide the tuned Proportional-

Integral control law:
s

shPI
1.305.7)( += . If this law is 

applied to the system, it produces the PA-control 
response, which is illustrated in the comparative diagram 
( Fig.2). 
 

G. Design specifications of  the  TOR  controller 
The design of the TOR dynamic optimal controller 

[24] is based on the following specifications: (i) the 
driving control Va(t) of the  motor is a linear function of 

the state vector [ω(t);i(t)] of the motor and its output 
[ω(t)] as well, (ii) the output [ω(t)] is connected first to 
the individual PA control and, then, is inserted (as input 
q(t)) to the LQG regulator, and (iii) the controller  
satisfies the minimization of the general cost criterion 
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5.  RESULTS - CONCLUSIONS 
 

The results of this research are resumed on the 
comparative diagram (Fig.2), which was developed in 
the MATLAB environment. The following clarifications 
are accompanied the research procedure:  The 
proportional control (P-control) was computed for the 
open-loop system, after consideration of the dc gain of 
the initial system. The integral control (I-control) was 
computed for the closed-loop system (unity feedback) on 
the basis of value Κi=5, provided by the MATLAB 
demo, after examination of the system’s root locus. The 
I-control was improved by using the Persson-Astrom 
tuned PI controller.  The LQG regulator was computed 

 
 



on the basis of the balancing theory and Kalman 
estimator.  The TOR regulator was computed by the 
simultaneous use of  preceding optimal methods: that is, 
by connecting the system’s output to the Persson-Astrom 
tuned PI controller and by  taking as inputs  for the LQR 
regulator: (i) the output of the  tuned PI controller, and 
(ii) the state vector x of  the system.  

Concluding, the significance of the LQG and  PA-
tuning methods for the optimal control of linear systems 
was verified in the diagram (Fig.2). Though, the TOR 
approach, that is, the ensemble utilization of the LQG 
controller and   Persson-Astrom tuned PI control, it was 
verified as superior to all the others. Further      research, 
though, is required for the extension and application of  
the  TOR  approach.                                                          
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