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Abstract - A complete 3-D Canonical Piecewise-Linear 
(CPWL) representation is developed constructively in this 
paper. The key to the representation is the establishment of 
the explicit functional formulation of basis function. It is 
proved that basis function is the most elementary generating 
function from which a fully general 3-D PWL function can be 
formulated. This CPWL representation laid a solid theoretical 
foundation for the development of a general nonlinear 
approximation, which can be seen as an extended version of 
the well-established Hinging Hyperplane Algorithm. 
 
Index Terms - Piecewise-linear representation, basis function, 
Piecewise-linear modeling, nonlinear approximation. 
 

I.  INTRODUCTION 

The continuous Piecewise-Linear (PWL) function is a 
promising tool in many fields where strong nonlinearity 
exits such as nonlinear system modeling, simulation and 
control. It prevents the PWL function’s wider application 
that conventional representation brings in too many 
parameters. Then the compact representation is of 
especially importance because it can compress local linear 
functions and region boundaries into one global analytic 
form and squeezes out most of the redundant parameters.  

The first step in this direction is the canonical 
representation proposed by Chua and Kang [1] and will be 
referred to as Chua1. The model can express any PWL 
function possessing the consistent variation property. Three 
extensions have been presented in [2-4] respectively, both 
of which are capable of expressing any 2-D PWL function. 
In [5] it was proved that any PWL function of n variables 
could be represented by no more than n-level nested 
absolute-value functions. By detailed analysis of the 
structure of the domain space, a canonical PWL 
representation is put up in [6]. In this model, the minimal 
degenerate intersection is defined that constitutes the 
“building block”, from which a fully general PWL function 
can be formulated. Using the theoretical framework in [6], 
a concrete functional form is proposed for PWL functions 
defined over a minimal degenerate intersection [7].  

Originated from the lattice PWL representation [8], a 
new multi-level nested absolute-value representation is 
built up constructively by Wang [9] and will be denoted as 
Wang’s model. Since the most elementary “building block” 
is not given in this model, it is not the simplest form of 
canonical representation. 

Although much effort has been done, it is still an open 
problem to find a practical canonical representation for 
PWL functions even in 3-D space. Very often the greatest 
difficulty in extending a result to n-dimensions is 
encountered in going from two to three dimensions since 
our geometrical intuition is more reliable with the ability to 
draw pictures in 2-D space.   
    The main purpose of the paper is to establish a novel 
canonical representation for all PWL functions with three 
variables. The representation capability of the new model 
is proved constructively in the form of an Algebraic 
Cutting Algorithm. Finally, since this CPWL presentation 
can be seen as a natural continuation to the Hinging 
Hyperplane Algorithm [10], it can also approximate any 
continuous nonlinear function to an arbitrary precision. 
This lays a solid theoretical foundation for the development 
of a general nonlinear approximation algorithm.  
 

II.  SIMPLIFICATION OF WANG’S MODEL 

The main result of  [9] can be summarized in the 
following lemma. 

Lemma 1：For any PWL function , 
there always exist a positive , a group of real 
numbers 
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The significance of Wang’s model is that it discovers the 

latent relationships between the PWL functions defined in 
neighboring dimensions.  

Definition 1: A continuous 2-D PWL function B is 
defined as 2-D basis function if it takes one of the 
following four forms  
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where . 3
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Here Li’s Geometrical Cutting Algorithm [4] is 
formulated algebraically in Lemma 2.  
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Lemma 2: Assume that Pm is a 2-D PWL function with 
m regions*. Assume further that R1, R2 are two adjacent 
regions and the local functions are 

. Then there must be a linear 
function  and two complementary 
sections  and  such that: 
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Therefore, for any , we have 2Rx∈
xaPPP T
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where P1 is the 2-D basis function defined in (2) , P2 
consists of m-1 regions, which can be described as 

 or  and P),max( 2−m
T Pxa ),min( 2−m

T Pxa m-2 is a PWL 
function with m-2 regions, each local linear function of 
which is identical with that of Pm. 

It is demonstrated in Lemma 2 that any 2-D PWL 
function can be equivalently transformed into an addition 
of simpler functions with fewer regions until it has 
degenerated into a 2-D basis function.  

Definition 2: A PWL function  is called a 3-
D hinging hyperplane if B is a 2-D basis function. 

),max( 3xB

Lemma 3: Any 3-D PWL function with one intersection 
at the origin can be represented by a superposition of 3-D 
hinging hyperplanes. 

Proof: Let   p(x)  be a 3-D PWL function with one 
intersection at the origin. Due to (1), we have 
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Take the term of as an example. 

Suppose that  is composed of m regions, denoted 
also as P
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),( 211 xxdi−

m. Inspired by (5), we can define the following 3-
D PWL function: 
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When the other case occurs that , we can obtain '
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* A region is a partition of the domain where the PWL function 
degenerates into one of its local linear functions. 

Accordingly, for any , we have  3
321 ),,( Rxxx ∈

))),,(max(),max( 32123 xxxdxPP m ==                (11)                 

By virtue of (11), we can get that  can be 
decomposed into a linear combination of three simpler 
PWL functions, the most complicated one of which 
consists of m-1 regions. If , the algorithm above 
can be run recursively. Finally we can obtain  
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Since the other terms in (6) are at most a 2-D PWL 
function, they all can be expressed by special kinds of 3-D 
Hinging Hyperplanes. Then the proof of Lemma 3 is 
completed here. 

 
III. CANONICAL REPRESENTATION OF 3-D PWL 

FUNCTION 
Definition 3: A PWL function  is defined 

as basis function if  where the 

parameter vectors 
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Lemma 4: Any 3-D hinging hyperplane can be 

represented by a linear combination of basis functions. 
Proof: For any 3-D hinging hyperplane, one of the four 

cases may occur 
Case 1: 
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Case 2:  Due to the following equivalent transformation 
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Finally, we can represent any 3-D hinging hyperplane H 
as follows: 
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where 1±=ijσ .Here the result of Lemma 4 is proved. 

Theorem 1: Any 3-D PWL function can be represented 
by a linear combination of basis functions. 

Proof: Any PWL function with an intersection located 
arbitrarily in the domain space can be translated to the 
origin through a linear transformation by adding a constant 
contribution to every local linear function.  

According to [6], any 2-D PWL function with multi 
second-order degenerate intersections can be rewritten into 
a superposition of PWL functions, each of which is defined 
over a degenerate intersection of same order. This 
completes the proof of Theorem 1.  

 
IV. BASIS FUNCTION 

In three dimensions, any continuous PWL function 
defined on a third-order minimal degenerate intersection 
can also be further decomposed into a linear combination 
of basis functions, so the basis function is a much more 
elementary “generating function” than the third-order 
minimal degenerate intersection. From the geometrical 
viewpoint, the domain of basis function consists of four 
linear regions intersecting at one point. Any couple of 
these regions is adjacent with a plane to separate them and 
every group of 3 regions intersects together to form a radial 
as the common boundary. It follows that the boundary 
configuration of basis function is the simplest degenerate 
boundary intersection that can produce a third-order 
Jacobian difference function [6]. Therefore, the basis 
function is the simplest type of third-order minimal 
degenerate intersection. 
Example 1:  
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is a PWL function, the domain structure of which is 
visualized in Fig.1. The regions and corresponding local 
linear functions are illustrated in Table 1. 

                    
TABLE I  

REGIONS AND LOCAL LINEAR FUNCTIONS 

Region Local Function Region Local Function
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Take the 1-D linear manifold  for an example, we can 

get  
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By definition,  is a second-order minimal degenerate 
intersection. Since there are four such manifolds 
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}3,,0,{ L=iiε , P(x) is defined over a third-order minimal 
degenerate intersection. Choosing 21)( xxxL +=  as the 
Cutting Hyperplane, we can obtain two complementary 
regions in the domain space    
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where  P1(x) and P2(x) are two basis functions defined over 
D1, D2, respectively (shown in Fig. 2).  

After further simplification, we have 
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It is proposed by Julian that any PWL function defined 
over a kth-order minimal degenerate intersection can be 
written in the canonical form [7] 
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Fig.1.The domain structure of P(x), which is a 

third-order minimal degenerate intersection. 

 



 

Fig.2. The domain structure of P1(x) and P2(x), both of which are 3-D 

basis functions. 
Specifically in three-dimensional space, we have 
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Accordingly, we can rediscover the meaning of Julian’s 
theorem as that it provides a way to represent a PWL 
function defined over minimal degenerate intersection with 
a linear combination of basis functions. Then the 
representation theorem in the paper can be seen as the 
extended version of Julian’s theorem in three dimensions, 
where the minimal degenerate intersection is further 
decomposed into still simpler basis function, which is a 
much more elementary “building block”.  

In [10] Breiman developed a hinging-finding algorithm 
(HFA) to approximate sufficiently smooth nonlinear 
functions: 
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Since the Hinging Hyperplane can be equivalently 

transformed into one level absolute-value function, the 
representation capability of (31) is essentially equal to 
Chua1 [11]. In two and higher dimensions, in order to 
achieve the required precision, HFA has to introduce much 
more terms to remedy the limitation of single Hinging 
Hyperplane. So the efficiency of the HFA is limited. Since 
the Hinging Hyperplane is in fact a special kind of the 
basis function, then this CPWL representation also has a 
fully general approximation capability for a continuous 
nonlinear function. Therefore, we are expected to propose 
a nonlinear approximation algorithm by substitute Hinging  
Hyperplanes with basis functions in the iterative scheme of 

 
 
 
 
 
 
 

 

 
HFA. The preliminary investigation shows that the new 
algorithm is promising. 
 

V. CONCLUSION 

For any continuous PWL function in three dimensions, a 
complete canonical representation model is developed, 
which is constructed upon basis functions instead of the 
third-order minimal degenerate intersections. It is proved 
by an Algebraic Cutting Algorithm that basis function is 
the most elementary “generating function”. Then it can 
serve to be the measure of the complexity of any general 3-
D PWL function.  

In addition, basis function has a very simple 
mathematical formulation and geometrical boundary 
configuration. Then an efficient CPWL approximation can 
be developed for any continuous nonlinear function. Since 
it can search for the approximation function in a much 
bigger set of PWL function, the CPWL approximation is 
expected to be more efficient than the HFA.  
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