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Abstract — In this paper, the necessary and sufficient
conditions for strict positive realness of the real rational
transfer functions are studied directly from basic definitions
in the frequency domain. This paper deals with a new
frequency domain approach to check if a real rational
transfer function is a strictly positive real or not. This
approach is based on the Taylor expansion and the Maximum
Modulus Principle which are the fundamental tools in the
complex analysis. Four related predominant statementsin the
strict positive realness area which is appeared in the control
literature are discussed; the weaknesses and the drawbacks of
these predominant statements are analyzed through some
counter examples. Then a new necessary condition for strict
positive realness are extracted via high frequency behavior of
the Nyquist diagram. Finally the most simplified and
completed conditions for strict positive realness are presented
based on the complex analysis.

Index Terms — Strict positive realness, frequency domain
definitions, Taylor expansion approach, high freguency
behavior, Maximum Modulus Principle.

|. INTRODUCTION

The concept of positive realness is motivated from
circuit theory. The sufficiency condition for positive
realness and many of it's properties are developed by Otto
Brune in 1930 [1-2]. In 1963, Popov introduced the notion
of hyperstability in control theory and showed that a linear
time-invariant system is hyperstable system if and only if
the transfer function of system is positive real, Also he
developed the concept of dtrict positive realness and
showed that a linear time-invariant system s
asymptotically hyperstable system if and only if the
transfer function of system is strictly positive real [3]. Thus
the concept “strict positive realness’ of transfer functions
has been extensively used in various field of control such
as Adaptive control [8-10], Optimal control [11-12],
Nonlinear control [13-15], Robust control [16-21] and even
Intelligent control [22]. The basic definition of strict
positive realness is motivated by Popov’'s hyperstability
theory which is stated in frequency domain, but it seems
that the frequency domain tools achieved less attention and
amost al activities are focused on the state space
approaches, specific Kaman-Y akubovich-Popov (KYP)
lemma [23-29]. With expiry fourth decade, still there is not
unique statement which states the necessary and sufficient
frequency domain conditions for strict positive realness in
the control literature. In this paper, the Taylor expansion
approach are introduced and used for study four
predominant statements in this area. Then new necessary
conditions which imposed by high frequency behavior of
the Nyquist diagram are extracted and finally the most
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simplified and completed conditions in frequency domain
for strict positive realness are presented based complex
analysis.

I1. BASIC DEFINITIONS

Let G(s) denote a rational transfer function with real
coefficients, then we have following definitions.

Definition 2.1 [7]: G(s) is positive real (PR) if and only
if:
1) G(s) isanalyticin Re[s] >0,
2) Any pure imaginary pole of G(s) isasimple pole and the
associated residue is positive,
3) For al rea w=0 for which jw is not a pole of G(s),
theinequality Re[G(jw)] = 0 issatisfied.

Definition 2.2 [3]: G(s) is strictly positive real (SPR) if
G(s-¢€) isPRfor sufficiently small £ > 0.

The fundamental question which the four predominant
statements in SPR area are trying to answering it, is: Which
extra conditions must be hold on an PR transfer function to
have an SPR transfer function? An important result of
paper will be ability to specify answer of this question.

I1l. TAYLOR EXPANSION APPROACH

Suppose G(s) in (3.1), be areal rational transfer function of
the complex variable s=o+jw.

s"+bs" +..+b

LONY

G(s) =k = =
as) &' +as™ +.+a

k#0 (3.1)

An important result implies from basic definitions in
previous section, can be stated as following Lemma:

Lemma 3.1: G(s) is SPRif and only if:
1) G(s) isanalyticin Re[s] > O,
2) n-mz-l1landif n-m=-1Then k>0

3) Re, +[G(jw-¢€)]20,0wz0.

Proof: According to the basic definitions, G(s) is SPR
if and only if the following conditions for sufficiently small
£ >0 aresdtisfied:

1) G(s-¢) isanayticin Re[s] >0,

2) Any pure imaginary pole of G(s-¢) is a simple pole
and the associated residue is positive,

3) For al red w=0 for which jw is not a pole of
G(s-¢), theinequality Re[G(jw-¢)] =0 issatisfied.

The phrase “ G(s-¢) is analytic in Re[g] > 0" is
equivalent to the phrase “G(s) is analytic in Re[s] > -¢”. It



is obvious that a real rational transfer function of complex
variable s=o+jw is analytic in the whole complex plane
except in its poles, now suppose G(s) be analytic in region
Re[s] > 0 and the nearest pole to the imaginary axis has a
real part equal to —p*, we can aways select ¢ such that
satisfied inequality ¢ < p*. Thus the phrase “ G(s-¢) is
analytic in Re[s] > 0" is eguivalent to the phrase “G(9) is
analytic in Re[s] > 0”. It is clear that the second condition
restricts the relative degree of G(s) and if the relative
degree of G(s) is equal to minus one then the positivity of k
IS necessary to guarantee positivity of associated residue
for smple poleininfinity. It is clear that the third condition
can be restated as appear in Lemma 3.1. o

We know that Taylor expansion of a rational transfer
function G(s) is valid on the whole complex plane except
on the poles of G(s). The first condition in the lemma 3.1,
guarantee the validity of Taylor expansion of G(s) on the
imaginary axis, hence Lemma 3.1 can be restated as
follows:

Lemma 3.2: G(s) isSPRif and only if:
1) G(s) isanayticin Re[s] > O,
2) n-mz-l1landif n-m=-1Then k>0

3) limReG(ja) - £G (jw) +%EZG"(jw)¢...] >0, 0w=0,
£-0 H

k
here 6% (jay = &
where G (jw) 0 G(s) o
Suppose G¢(s)=(L/2)[G(s)+G(-5)] and Gy(s)=(1/2)[G(s)
-G(-9)] are the even and odd parts of G(s) respectively.
Since the derivative of an even rational transfer function is
an odd transfer function and the derivative of an odd
rational transfer function is an even transfer function, hence
it iseasy to verify that:
. . v 1 . " .
Re[G(jw—-¢)] =G, (jw) - G, (jw) +f£ Ge(ja))$2 .. (B2

|
Thus the Lemma 3.2 can be restated as follows:

Lemma 3.3: G(s) isSPRif and only if :
1) G(s) isandyticin Re[s] > O,

2) n-m=-l1landif n-m=-1Then k>0

3) Iimh0+{Ge(jw)—sG(',(ja))+%ng;(ja))r,g...} >0,0w=20

1V. Previous PREDOMINANT STATEMENTS

In spite of the basic definition of SPR functions has
been motivated by Popov’s hyperstability theory and stated
in frequency domain [3], it seems that the frequency
domain tools achieved less attention and amost all
activities is focused on the state space approaches, specific
the Kaman-Yakubovich-Popov (KYP) lemma. In this
section the four well-known predominant statements that
state the necessary and sufficient conditions for SPR
functions are discussed based on Lemma 3.3 as a criterion
for strict positive realness which resulted directly from
frequency domain definitions.

Theorem 4.1 [4, Astrom]: G(s) is SPR if and only if:
1) G(s) isanayticin Re[s] > O,
2) G(s) has no any pole or zero on the imaginary axis,
3) Re[G(jw)] =0,0w=0.

Counter Example 4.1: According to this theorem the

transfer function G (s) = SSZ+S+1 is SPR, because:
1 +s+4
. . (' —2)?
RG (jw)] =G, (jw) =———=20,0w=0
eG (jw)] =G (jw) (W —a) e

But using Lemma 3.3 we have

Re[G, (jw—¢)] =

(s?+2)? e -95"-215"+48 .
(s+4°=s" 7| ((#+ap-¢) |

s=jw

+

_ (@2 | -9af+2107 +48
(=) +af | ((@P-22+at)

Now it is easy to verify that

Re[G (jV2 - ¢)] = -15¢ + hot(e)

Thus G(s) is hot SPR by the basic definition because
lim_ . Re[G (jv2-¢)]=-15¢<0.

Theorem 4.2 [5, Sloting]: G(s) is SPR, if and only if:
1) G(s) isanalytic in Re[s] > 0,
2) Re[G(jw)] > 0,0w=0.

Comment 4.1: It should be noted that, if r is the
relative degree of G(s), then the relative degree of G¥(s) is
r+k, hence the first two terms of the Taylor expansion are
sufficient for study the behavior of G(s) in sufficiently
large frequencies. Thisfact will be used in counter example
4.2 and example 4.1 .

Counter Example 4.2: According to theorem 4.2 the

transfer function Gz(s) = is SPR, because:

Thus G(s) is not SPR according to the basic definitions
because

SP+st+l

Re[G ()] = Gy (j0) = ﬁ> 0,020

But using Lemma 3.3 we have

Re[G, (jw~¢)]=

1 e o+ -3
(@D | (@D +ar)

. &
Rey..«[G,(jw-¢)] = -5 <0,0e>0

Theorem 4.3 [6, loannou and Tao]: G(s) is SPR, if
and only if :

1) G(s) isanalyticin Re[s] > 0,
2) Re[G(jw)] >0,0w=0,
3) One of the following conditions is satisfied:



i) lim ,_ o, Re[G(jw)]>0

G(s)

a) If n-m=-1Then:y
||)I|msqooT>0

b) If n—mleher1Iim0hma)2 Re[G(jw)] >0 .

Comment 4.2: The above theorem is correct, but it
should be noted that the condition i) of a) of 3) in above
theorem is not appear in [8-9]. Therefore the necessity of
this condition is mentioned by following example.

2

1 .
o1 according to

Example 4.1: SupposeG (s) = >

Lemma 3.3 we have:

a)“+3w2] .

RelG, (jw= &)= af1+1_££ (7 +1)?

And using Comment 4.1 implies
Rey.«[G (jw—¢&)]=-£<0

Thus G(s) isnot SPR.

It is easy to show that all conditions in theorem 4.3
are satisfied for G,(s) , except the condition i) of @) of 3).
Theorem 4.4 [7, Khalil]: Suppose G(s) is a proper
rational transfer function, then G(s) is SPR, if and only if:
1) G(s) isandyticin Re[s] > O,
2) Re[G(jw)] >0,0w=0,
3) One of the following conditions is satisfied:
a) If n-m=0Thenk>0

b) If n-m=1Thenlim,__ «’ Re[G(je)] >0

This theorem states the conditions only for proper
transfer functions and it is correct. In general, the third
condition which is appeared in the two last theorems
implies the fact that there are extra necessary conditions for
SPR functions which are imposed by high frequencies.
This fact is studied in next section using high frequency
behavior of transfer functionsin Nyquist diagram.

V. A NEwW NECESSARY CONDITION

Suppose G(s) is a rea rational transfer function as
shown in (3.1), it should be noted that the inequalities

k>0[n-m<1adh>0,i=1.,m;a320,j=1..,n can
easily be resulted from circuit theory for any positive real
function. Therefore assume that k > 0,/n-m <1 in (3.1), it
is easy to show that if n=m, then there is not any extra
condition which is imposed by high frequencies for strict
positive realness because G(s) - kass — o . Now if
In-m =1, then the extra condition (n-m)(a ~b) >0, is

imposed by high frequencies, this fact is explained in the
following lemma.

Lemma 5.1: If G(s) is SPR and |n-m =1, then the
inequality (n-m)(a, —b,) >0 will be satisfied.

Proof: Suppose G(s) in (3.1) and k>0,n-m<1.
Now if n—-m=1, it is obvious that, if G(s) is PR then its
Nyquist diagram lies at closed right half complex plane and
G(s) » k/(s+a) ass - o, thus the derivative of

argG(jw) can not be postive a sufficiently large
frequencies. Also equality arg{1l/G(jw)} =—argG(jw),
implies that the derivative of argG(jw) is not negative
when n—-m= -1, hence if G(s) is PR and [n-m =1, then
the inequality

(n—m)(i argG(jw)j <0, |n-m=1 (5.1)
dw
W o
must be satisfied. Now
(jw-&)" +..+b M(ie-e-2)
G(jw-¢€)=k - m= k2L (5.2
(jw-¢g)" +..+a M(iw-e-p)

1l
=

itiseasy to see that

m
. _ - Imz
agG(jw—¢€)= ) tan 1(0)_7]—
Z:l: -&-Rez |

=}

tan-l[L'm P ] (5.3)
= -£-Rep

Hence

d - ~ m
MargG(ja)—E) —Z[

i=1

-£-Rez
(e+Rez)*+(aw-Imz)*

) (5.4)
_Z -£-Rep
=\ (e+Rep ) Hw-Imp)?
Now, it is easy to verify that
m n
d . - -&-Rez | _ -£-Rep
dwargG(Jw-a) Zl:( 7 ) lz_l:(wz J
W 00 1= - (55)
_b-a+(n-mye
=_ >

Therefore the inequality (n—m)(di argG(jw)j <0, implies
w
wW— 0
that (n—-m)(a, —b )= ¢ >0, and this completed the proof
of thelemma. o
Remark 5.1: If G(s) is PR and |n-m =1, then the

inequality (n- m)(a1 —bl) > 0 will be satisfied.

Remark 5.2: If G(s) is SPR and |n-m =1 then by
equation (5.5) and Lemma 5.1 can be shown that the

%}argG(ja)) can not decay more rapidly than w’ as

o,



Comment 5.1: The restriction which is introduced in
Remark 5.2 there is not exist for the PR functions, and it is
an important difference between PR and SPR functions that
be resulted from high frequency behavior of transfer
functions in Nyquist diagram. In the other words, it is clear
that: —b; is equal to the summation of the zeros of G(s) and
—a, is equal to the summation of the poles of G(s), hence
the third condition which is appeared in the theorems 4.3

and 4.4 can be replaced with: if [n-m/ =1, then a; # by.
Alsothe new necessary condition which is stated in Lemma
5.1 for G(s) with relative degree one can be interpreted as
follows:

n m )
a,—b =| X Re[-p]|—| X Rel-3] |>0 (56

=1 i=1

Comment 5.2: Suppose G(s) has relative degree one
and itisintheform of (3.1), then

- Reb(jwa(-jw) _, (a-h)wF"+..
RAGUI (watiw)  we-

(5.7)

thus lim  _«f Re[G(jw)] =k(a —h) , hence the condition
If n-m=1Thenlim,__ & Re[G(jw)] >0
appear in the theorems 4.3 and 4.4 can be restated as.
If n-m=1 Then k(a, -b)>0 , but the second
condition in these theorems guarantee the inequality
k(a,—b)=0for n—-m=1, therefore this condition can
besimplifiedto: If n—-m=1 Then a #b .

The following examples illustrate utilization of this
necessary condition.

Example5.1: Let

_ (s+4)(s+6)
Ci(9)= (sr2)(s+3)(s+5)

which is

According to (5.6) & —b,=(2+3+5) - (4+6)=0, thus using
Lemma 5.1 and Remark 5.1, resulted that G4(s) is not SPR
but maybe PR. Fig. 1 shows that G4(s) is PR.

Example 5.2 Let

S+s+l

G ()= 5 gia9+3s+2

According to (5.6) a —b =(2/2)-(1) =0, thus using
Lemma 5.1 and Remark 5.1, resulted that Gs(s) is hot SPR
but maybe PR. Fig. 1 shows that Gs(s) is not PR.

Example 5.3: Let

G.(9= (S°+6s+11)(s°+55+3)
6177 (2 +35+7) (35 +185% +55+9)

According to (5.6) @ —b,=(3+18/3) - (6+5)=- 2, thus using
Lemma 5.1 and Remark 5.1, resulted that Gg(s) is not PR.
Fig. 1 showsthat Gg(s) is not PR.

Nyquist Diagram

Imaginary Axis

0.05 01

0.1 0.05 0

Real Axis
Fig. 1: Gus): __ .. ,Gs(8: __  ,Ge(9:___

VI. MAIN RESULTS
Theorem 6.1: G(s) is SPR, if and only if :
1) G(s) isandyticin Re[s] > 0,
2) n-mz-1landif n-m=-1Then k>0
3) Re[G(jw)] > 0,0w=0

4) If the relative degree of G(s) is nonzero then the
summation of zeros and the summation of poles of G(s)
must be not equal, i.e., if [n-m =1 Then a #h .

Proof: An important result implies from Maximum
Modulus Principle in the complex analysis is that as
follows:

Lemma 6.1 [30]: Suppose G(s) is a function of complex
variable s=0+ jw, now if it isanalytic in a closed bounded

region I and not constant throughout the interior of I,
then Re[G(s)] has a minimum value in ™ which occurs on
the boundary of I and never in theinterior.

Now consider Lemma 3.1, the first condition states
that G(s) is analytic in Re[s] > 0O, therefore minimum value
of Re[G(s)] occurs on the boundary s = —¢ + jw, DwOR
that appear in third condition of Lemma 3.1. If
Re[G(jw)] 20 and exist finite frequency w, such that

Re[G(jw,)] =0 then the above result of Maximum
Modulus Principle implies that Re[G(jw, - ¢)] <0,0&>0
and thus the inequality Re[G(jw)] >0 is necessary for

Re .[G(jw-¢)]20,Uw0R to be satisfied. The fourth

condition can be proved by study the inequality
Re[G(jw—-€)]20,06>0 in the sufficiently large
frequencies as discussed in the previous section. o



Comment 6.1 We know the inequalities k >0,

In-m < 1 can easily be resulted from circuit theory for any

positive real function, hence the above theorem can be
restated to be more user-friendly asfollows:

Theorem 6.2: The real rational transfer function

s"+bs™ +...+b
G(s)=kb(s) _ ) n

a(s) s" + alsm1 +.+a

,k#0

isSPR, if and only if :

1) k>0 and [n-m <1 and if [n-m =1Then a #b,,
2) G(s) isanalyticin Re[s] > 0,

3) Re[G(jw)] >0,0w=0

Comment 6.2: If G(s) is PR, then it will be SPR if the
following extra conditions are satisfied:

1) G(s) has no any pole or zero on the imaginary axis,

2) REG(jw)] 2 0,0wlOR

3) If [n-m=1Then a #b

VI1l. CONCLUSION

In this paper, unlike other works which have focused
on the state space tools such as KYP lemma, the results
have been obtained directly from basic definitions in the
freqguency domain using complex anaysis tools. The
proposed method has been established based on the Taylor
expansion and the Maximum Modulus Principle. Using
Taylor expansion approach, the four predominant
statements in the strict positive realness area has been
studied. A new necessary condition based on the high
frequency behavior of transfer functions has been also
extracted and finaly the most simplified and completed
conditions for strict positive realness in frequency domain
have been presented.
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