Realization problem for positive multivariable continuous-time systems with delays

Tadeusz Kaczorek, Senior Member, IEEE
Bialystok Technical University, Poland
kaczorek@isep.pw.edu.pl

Abstract—The realization problem for positive, multivariable continuous-time linear systems with delays in state and in control is formulated and solved. Sufficient conditions for the existence of positive realizations of a given proper transfer function are established. A procedure for computation of positive minimal realizations is presented and illustrated by an example.

I. INTRODUCTION

In positive systems inputs, state variables and outputs take only non-negative values. Examples of positive systems are industrial processes involving chemical reactors, heat exchangers and distillation columns, storage systems, compartmental systems, water and atmospheric pollution models. A variety of models having positive linear systems behaviour can be found in engineering, management science, economics, social sciences, biology and medicine, etc.

Positive linear systems are defined on cones and not on linear spaces. Therefore, the theory of positive systems is more complicated and less advanced. An overview of state of the art in positive systems theory is given in the monographs [4, 6]. Recent developments in positive systems theory and some new results are given in [7]. Realizations problem of positive linear systems without time-delays has been considered in many papers and books [1, 4, 6].

Explicit solution of equations describing the discrete-time systems with time-delay has been given in [2]. Recently, the reachability, controllability and minimum energy control of positive linear discrete-time systems with time-delays have been considered in [3, 11]. The realization problem for positive multivariable discrete-time systems has one-time delay was formulated and solved in [8].

The main purpose of this paper is to present a method for computation of positive realizations for positive multivariable continuous-time systems with time-delays in state and in control. Sufficient conditions for the solvability of the realization problem will be established and a procedure for computation of a positive realization of a proper transfer function will be presented.

To the best knowledge of the author the realization problem for positive continuous-time linear systems with delays in state vector and control has not been considered yet.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider the multivariable continuous-time system with \(h \) delays in state and \(q \) delays in control

\[
\dot{x}(t) = \sum_{i=0}^{h} A_i x(t - id) + \sum_{j=0}^{q} B_j u(t - jd) \quad (1)
\]

\[
y(t) = C x(t) + D u(t)
\]

where \(x(t) \in \mathbb{R}^n \), \(u(t) \in \mathbb{R}^m \), \(y(t) \in \mathbb{R}^p \) are the state, input and output vectors, respectively and \(A_i \in \mathbb{R}^{n \times n}, \quad i = 0, 1, \ldots, h \)

\(B_j \in \mathbb{R}^{n \times m}, \quad j = 0, 1, \ldots, q \)

\(C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m} \) and \(d > 0 \) is a delay.

Initial conditions for (1) are given by

\[
x(t) \quad \text{for} \quad t \in [-hd, 0] \quad (2)
\]

Let \(\mathbb{R}_+^m \) be the set of \(m \times n \) real matrices with nonnegative entries and \(\mathbb{R}_+^{m \times n} \).

Definition 1. The system (1) is called (internally) positive if for every \(x(t) \in \mathbb{R}_+^n, \quad t \in [-hd, 0] \), \(u(t) \in \mathbb{R}_+^m, \quad t \in [-qh, 0] \) and all inputs \(u(t) \in \mathbb{R}_+, \quad t \geq 0 \) we have \(x(t) \in \mathbb{R}_+^n \) and \(y(t) \in \mathbb{R}_+^p, \quad t \geq 0 \).

Let \(\mathcal{M}_n \) be the set of \(n \times n \) Metzler matrices i.e. the set of \(n \times n \) real matrices with nonnegative off diagonal entries.

Theorem 1. The system (1) is positive if and only if \(A_0 \) is a Metzler matrix and matrices \(A_i, i=1,\ldots,q, B_j, j=0,1,\ldots,q, C, D \) have nonnegative entries, i.e.

\[
A_0 \in \mathcal{M}_n, \quad A_i \in \mathbb{R}_+^{n \times n}, \quad i = 1, \ldots, h, \quad B_j \in \mathbb{R}_+^{n \times m}, \quad j = 0, 1, \ldots, q, C \in \mathbb{R}_+^{p \times n}, \quad D \in \mathbb{R}_+^{p \times m} \quad (3)
\]

Proof. To simplify the notation the essence of proof will be shown for \(h=q=1 \). Using the step method [5 p.49] and defining the vectors...
\[\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_1(t + kd) \\ \vdots \\ x_{n+1}(t + kd) \end{bmatrix}, \quad \mathbf{u}(t) = \begin{bmatrix} u(t) \\ u(t + d) \\ \vdots \\ u(t + kd) \end{bmatrix}, \]

\[z_0(t) = \begin{bmatrix} A_0 x_1(t-d) + B_0 u(t-d) \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad t \in [0, d], \quad (k \text{ any positive integer}) \]

The matrices

\[\mathbf{A} = \begin{bmatrix} A_0 & 0 & 0 & \cdots & 0 & 0 \\ A_1 & A_0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & A_1 & A_0 \\ B_0 & 0 & 0 & \cdots & 0 & 0 \\ B_1 & B_0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & B_1 & B_0 \end{bmatrix}, \]

\[\mathbf{B} = \mathbf{C} = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 \end{bmatrix} \]

we may write the equations (1) in the form

\[\tilde{x}(t) = \tilde{A} \mathbf{x}(t) + \tilde{B} \mathbf{u}(t) + z_0(t) \quad t \in [0, d] \]

\[y(t) = \tilde{C} \mathbf{x}(t) + \tilde{D} \mathbf{u}(t) \]

It is well known \([6, 9]\) that the system (6) is positive if and only if the matrix \(\mathbf{A}\) is a Metzler matrix and the matrices \(\mathbf{B}, \mathbf{C}\) and \(\mathbf{D}\) have nonnegative entries. From the structure of the matrices (5) it follows that the system (1) is positive if and only if (3) holds.

The transfer function of the system (1) is given by

\[T(s, w) = C (\text{Adj} \, H(s, w)) (B_0 + B_1 w + \cdots + B_{n-1} w^{n-1}) + D, \quad w = e^{-ks} \]

\[= \frac{N(s, w)}{d(s, w)} + D \]

Define 2. Matrices (3) are called a positive realization of a given transfer function \(T(s, w)\) if they satisfy the equality (7). A realization is called minimal if the dimension \(n \times n\) of matrices \(A_i, i=0, 1, \ldots, h\) is minimal among all realizations of \(T(s, w)\).

The positive realization problem can be stated as follows. Given a proper transfer function \(T(s, w)\) find a positive realization (3) of \(T(s, w)\).

In this paper sufficient conditions for solvability of the problem will be established and a procedure for the computation of a positive minimal realization will be proposed.

III. PROBLEM SOLUTION

The transfer function (7) can be rewritten in the form

\[T(s, w) = \frac{N(s, w)}{d(s, w)} + D \]

where

\[H(s, w) = [I_s - A_0 - A_1 w - \cdots - A_n w^n], \]

\[N(s, w) = C (\text{Adj} \, H(s, w)) (B_0 + B_1 w + \cdots + B_{n-1} w^{n-1}), \]

\(d(s, w) = \det H(s, w)\)

From (8) we have

\[D = \lim_{s \to \infty} T(s, w) \]

since \(\lim_{s \to \infty} H^{-1}(s, w) = 0\).

The strictly proper part of \(T(s, w)\) is given by

\[T_p(s, w) = T(s, w) - D = \frac{N(s, w)}{d(s, w)} \]

Therefore, the positive realization problem has been reduced to finding matrices

\[A_0 \in M_n, A_i \in \mathbb{R}_{+}^{m \times n}, k = 1, \ldots, q, B_j \in \mathbb{R}_{+}^{m}, j = 1, \ldots, q, C \in \mathbb{R}_{+}^{m \times p} \]

for a given strictly proper transfer function (12).

Lemma 1. If

\[A_0 = \begin{bmatrix} 0 & 0 & \cdots & 0 & a_{i0} \\ 1 & 0 & \cdots & 0 & a_{i1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & a_{in-1} \end{bmatrix}, \quad A_i = \begin{bmatrix} 0 & 0 & \cdots & 0 & a_{i0} \\ 0 & 0 & \cdots & 0 & a_{i1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & a_{im-1} \end{bmatrix} \]

then

\[d(s, w) = \det[I_s - A_0 - A_1 w - \cdots - A_n w^n] = s^r - d_0 s^{r-1} - d_1 s^{r-2} - \cdots - d_{r-1} s + d_0 \]

where

\[d_j = d_j(w) = a_{k0} w^j + a_{k1} w^{j+1} + \cdots + a_{kn-1} w^n, \]

\(j = 0, 1, \ldots, n-1\)

Proof. Expansion of the determinant with respect to the nth
column yields

\[
\begin{vmatrix}
 s & 0 & \cdots & 0 & -d_0 \\
 -1 & s & \cdots & 0 & -d_1 \\
 0 & -1 & \cdots & 0 & -d_2 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \cdots & s & -d_{n-2} \\
 0 & 0 & \cdots & -1 & s - d_{n-1}
\end{vmatrix}
\]

\[s^n - d_0 s^{n-1} - d_1 s^{n-2} - \cdots - d_{n-2} s - d_{n-1} = 0\]

Remark 1. There exist many different matrices \(A_0, A_1, \ldots, A_h\) giving the same desired polynomial \(d(s,w)\) [8-10].

Remark 2. The matrix \(A_0\) is a Metzler matrix and the matrices \(A_1, \ldots, A_h\) have nonnegative entries if and only if the coefficients \(a_{ij}\) of the polynomial \(d(s,w)\) are nonnegative except \(a_{0,n-1}\) which can be arbitrary.

Remark 3. The dimension \(n \times n\) of matrices (14) is the smallest possible one for the given \(d(s,w)\).

Lemma 2. If the matrices \(A_i, i=0,1,\ldots,h\) have the form (14) then the \(n\)-th row of the adjoint matrix \(\text{Adj} H(s,w)\) has the form

\[R_n(s) = \begin{bmatrix} 1 & s & \cdots & s^{n-1} \end{bmatrix}\]

Proof. Taking into account that

\[(\text{Adj} H(s,w)) H(s,w) = I_n d(s,w)\]

it is easy to verify that

\[R_n(s) H(s,w) = \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix} d(s,w)\]

The strictly proper matrix \(T_{sp}(s,w)\) can be always written in the form

\[T_{sp}(s,w) = \begin{bmatrix}
N_i(s,w) \\
\vdots \\
N_p(s,w) \\
\end{bmatrix} \begin{bmatrix}
d_1(s,w) \\
\vdots \\
d_p(s,w) \\
\end{bmatrix}\]

where

\[d_k(s,w) = s^k - d_{k-1} s^{k-1} - \cdots - d_1 s - d_0, \quad k = 1, \ldots, p\]

\[d_i = a_{ij} s^j + \cdots + a_{i0} s^0, \quad i = 0, 1, \ldots, n_i - 1\]

is the least common denominator of the \(k\)-th row of \(T_{sp}(s,w)\) and

\[N_k(s,w) = [n_{k1}(s,w), \ldots, n_{kn}(s,w)], \quad k = 1, \ldots, p\]

By Lemma 1 we may associate to the polynomial (20) the matrices

\[
A_{k0} = \begin{bmatrix}
0 & 0 & \cdots & 0 & a_{00} \\
1 & 0 & \cdots & 0 & a_{01} \\
0 & 1 & \cdots & 0 & a_{0i} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & a_{0,n-1}
\end{bmatrix},
\]

\[
A_k = \begin{bmatrix}
0 & 0 & \cdots & 0 & a_{i0} \\
0 & 0 & \cdots & 0 & a_{i1} \\
0 & 0 & \cdots & 0 & a_{il} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & a_{ik}
\end{bmatrix}, \quad k = 1, \ldots, p, \quad i = 1, \ldots, h_k
\]

satisfying the condition

\[d_k(s,w) = \det [I_n - A_{k0} - A_1 w - \cdots - A_{kh_k} w^k], \quad k = 1, \ldots, p\]

Let

\[A_n = \text{block diag} \{A_0, \ldots, A_p\} \in \mathbb{R}^{n \times n}, \quad A_i = \text{block diag} \{A_{i0}, \ldots, A_{ip}\} \in \mathbb{R}^{n \times n} (n = n_1 + \cdots + n_p)\]

\[
B = \begin{bmatrix}
b_{11} & \cdots & b_{1m} \\
\vdots & \ddots & \vdots \\
b_{p1} & \cdots & b_{pm}
\end{bmatrix}, \quad B_k = \begin{bmatrix}
b_{k1} \\
\vdots \\
b_{km}
\end{bmatrix}, \quad k = 0, 1, \ldots, q; \quad i = 1, \ldots, p; \quad j = 1, \ldots, m
\]

\[C = \text{block diag} \{c_1, \ldots, c_p\}, \quad c_i = [0 \ldots 0 1] \in \mathbb{R}^{1 \times n} \quad k = 1, \ldots, p\]

The number of delays \(q\) in control is equal to the degree of the polynomial matrix \(N_i(s,w)\) in variable \(w\).

From (8), (17), (22), (24)-(26) we obtain for the \(j\)-th column of \(T_{sp}(s,w)\)
Theorem 2. There exist a positive realization (3) of $T(s,w)$ if

i. $T(\infty) = \lim_{s \to \infty} T(s,w) \in R_{\text{pos}}$

ii. the coefficients of $d_i(s,w)$ for $k=1,\ldots,p$ are nonnegative except a_{0n-i}, $i = 1,\ldots,p$, i.e.

$$a_{0i}^k \geq 0, \quad i = 1,\ldots,h; \quad j = 0,1,\ldots,n_k-1, \quad k = 1,\ldots,p$$

iii. the coefficients of $N_j(s,w)$, $j=1,\ldots,m$ are nonnegative, i.e.

$$n_{iy}^k \geq 0 \quad \text{for} \quad i, j = 1,\ldots,p; \quad j = 1,\ldots,m; \quad k = 0,1,\ldots,q$$

Proof. The condition (29) implies $D \in R_{\text{pos}}$. If the conditions (30) are satisfied then the matrices (22) have nonnegative entries except a_{0n-i}, $k = 1,\ldots,p$ which can be arbitrary. In this case $A_0 \in M_0$ and $A_j \in R_{\text{pos}}$, $i = 1,\ldots,h$. If additionally the conditions (31) are satisfied then from (28) it follows that $B_k \in R_{\text{pos}}$, $k=0,1,\ldots,q$. The matrix C of the form (26) is independent of $T(s,w)$ and it has always nonnegative entries.

Theorem 3. The realization (3) of $T(s,w)$ is minimal if the polynomials $d_i(s,w),\ldots,d_p(s,w)$ are relatively prime (coprime).

Proof. If the polynomials $d_i(s,w),\ldots,d_p(s,w)$ are relatively prime then $d(s,w)d_i(s,w),\ldots,d(s,w)$ and by Remark 3 the matrices (24) have minimal dimensions.

If the conditions of Theorem 2 are satisfied then a positive minimal realization (3) of $T(s,w)$ can be found by the use of the following procedure.

Procedure

Step 1. Using (11) and (12) find the matrix D and the strictly proper matrix $T_0(s,w)$

Step 2. Knowing the coefficients of $d_i(s,w)$, $k=1,\ldots,p$ find the matrices (14) and (24).

Step 3. Knowing the coefficients of $N_j(s,w)$, $j=1,\ldots,m$ and using (28), (26) find the matrices B_j, $i=0,1,\ldots,q$ and the matrix C.

Example. Using the Procedure find a positive realization (3) of the transfer matrix

$$T(s,w) =$$

$$= \frac{s^2 + (-w^2 + w + 2)s - w^2 + w}{s + (w^2 + 2)s - (2w^2 + w + 1)}$$

$$= \frac{s^2 + 3s - (2w^2 + 1)}{s - 2w^2 - w + 1}$$

It is easy to verify that the assumptions of Theorem 2 are
satisfied.

Using the Procedure we obtain

Step 1. From (11) and (12) we have

\[
D = \lim_{s \to \infty} T(s, w) = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}
\]

(33)

and

\[
T_{sp}(s, w) = T(s, w) - D = \frac{ws^2 + w^2 + 1}{s^2 + (-w^2 + 2)s - (2w^2 + w + 1)}
\]

(34)

Step 2. Taking into account that

\[
d_1(s, w) = s^2 + (-w^2 + 2)s - (2w^2 + w + 1),
\]

\[
d_2(s, w) = s - 2w^2 - w + 1
\]

and using (14), (24) we obtain

\[
A_1 = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & -1 \end{bmatrix},
\]

\[
A_0 = \begin{bmatrix} A_0 & 0 \\ 0 & A_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

(35)

Step 3. In this case

\[
n_{11}(s, w) = ws + w^2 + 1, \, n_{12}(s, w) = (w^2 + 1)s + w,
\]

\[
n_{21}(s, w) = w^2 + 1, \, n_{22}(s, w) = 2(w^2 + w)
\]

Using (28) and (26) we obtain

\[
B_0 = \begin{bmatrix} b_{00}^{11} & b_{01}^{11} \\ b_{00}^{12} & b_{01}^{12} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}
\]

(36)

\[
B_1 = \begin{bmatrix} b_{10}^{11} & b_{11}^{11} \\ b_{10}^{12} & b_{11}^{12} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}
\]

\[
B_2 = \begin{bmatrix} b_{20}^{11} & b_{21}^{11} \\ b_{20}^{12} & b_{21}^{12} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}
\]

and

\[
C = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

The desired positive realization of (3) of (32) is given by

(33), (35) and (36). The realization is minimal since the polynomials \(d_1(s, w), d_2(s, w)\) are relatively prime.

IV. CONCLUDING REMARKS

The realization problem for positive multivariable continuous-time systems with delays in state and in control has been formulated and solved. The special forms (14) and (24) of the matrices \(A_i, i=0,1,\ldots,h\) have been introduced. Sufficient conditions for the existence of a positive realization (3) of a proper matrix transfer function \(T(s, w)\) have been established. The number of delays in control is equal to the degree of the polynomial matrix \(N(s, w)\) in the variable \(w\). It has been shown that the realization is minimal if the denominators \(d_i(s, w), i=1,\ldots,p\) are relatively prime. A procedure for computation of a positive realization (3) of a proper matrix \(T(s, w)\) has been presented and illustrated by a numerical example. An extension of the method for singular positive systems with delays is a open problem.

Aknowledgements

The work was supported by the State Committee for Scientific Research in Poland under grant No 3T11A00627

REFERENCES

